長さaの軽い棒の各端に質量mの物体A,Bを取り付け、なめらかな床の上におき、これを棒の中点Oを中心として鉛直軸まわりに角速度ω0で回転させる。
これに質量mの物体cを近づけたところ、BとCが衝突して一体となった。
(1)3個の物体からなる系の重心のまわりの角運動量の大きさを求めよ
(2)重心のまわりの衝突後の角速度の大きさを求めよ
解答によると、衝突前の角運動量は、
Lo = (a/3)・m・(a/2)ωo + (2a/3)・m・(a/2)ωo = (1/2)ma^2ωo.
衝突後の角運動量は、
L = (a/3)・2m・(a/3)ω + (2a/3)・m・(2a/3)ω
となると書いてあるのですが、なぜ衝突後の式は、v=rωのrが、a/2からa/3、2a/3に変わっているのでしょうか。
ご教授よろしくお願い致します。
No.1ベストアンサー
- 回答日時:
問題の現象がどうなっているのかよくわかりませんが、C はどのように衝突して、どのように一体になったのでしょうね。
途中の過渡変化を考えずに、単純に「使用前」「使用後」を「平衡状態」として考えると、
(i) 使用前:
長さ a の棒の中心(端部からそれぞれ a/2 の距離)を中心に回転
(ii) 使用前:
質量が一方は m、他方は 2m なので、その重心である「A から (2/3)a, BC から (1/3)a」の位置を中心に回転
角運動量は、大きさだけを考えると
L = rp = rmv = rm・rω = mr^2・ω
(i) の角運動量は、2つの質点とも r=a/2 ですから
L0 = m(a/2)^2・ω0 + m(a/2)^2・ω0 = (1/2)ma^2・ω0
(ii) の角運動量は、回転中心からの距離が (1/3)a, (2/3)a なので
L = m[(2/3)a]^2・ω + 2m[(1/3)a]^2・ω
= (2/3)ma^2・ω
お書きになっている「衝突前」の L0 の意味がよくわかりません。
No.2
- 回答日時:
衝突の状況がはっきりしないけど
Cが棒の中心に対して充分ゆっくりと近づいてきたと仮定しましょう。
衝突前、重心まわりの角運動量は
m(a/2)²ω0×2=(1/2)ma²ω0
重心に対して静止している点回りの角運動量は、
重心まわりの角運動量と同じたから
Lo = (a/3)・m・(a/2)ωo + (2a/3)・m・(a/2)ωo = (1/2)ma^2ωo.
は衝突後の重心まわりの衝突前の角運動量を表しているのでしょう。
a/2とか2a/3とかは衝突後の重心と両端との距離ですね。
仮定の通りCはゆっくり動いていて
新しい重心に対して運動量を持たないとすると
衝突による内力で角運動量は変化しないので
L=L0
となります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 質量 M,半径αの円板が1つの直径を固定軸として回転できるようになっている。質量mの物体が速さvで円 2 2022/10/21 20:16
- 物理学 高1力学の運動量の問題です。問題を一通り解いたのですが、行き詰まってしまったのでご回答頂ければ嬉しい 3 2022/06/29 11:20
- 物理学 高校物理 水平な床面上の点Aから、水平と角θをなす向きに速さv0、質量mの小球aを高さhの点Bで静止 1 2022/06/06 17:53
- 物理学 力学の問題です。質量m1、速度v1の物体Aと質量m2、速度v2の物体Bがx軸上を等速直線運動していて 2 2022/12/24 13:26
- 物理学 力学的エネルギー保存則について 4 2023/06/06 14:02
- 物理学 「反発係数=e」「衝突前の球の速度=V」「平面な床に衝突後の球の速度をv」とした時、eを表す関係式は 7 2022/12/18 18:06
- 物理学 運動量の問題について質問で1次元で2物体の衝突の運動で衝突後の速度が右向きか左向きかわからないときは 5 2023/05/22 21:28
- 物理学 図のように、内半径aの中空の円筒が、その中心軸が水平になるように固定されており、その中で、 質量 M 7 2023/02/15 09:23
- 物理学 高2物理反発係数の問題が分かりません。 教えてください。 小球をh(m)の高さから床の上に落とした。 1 2023/05/29 20:23
- 物理学 物理の問題(車関係)で質問があります。 東方向に15.5m/sで走行中の車(1250kg)が角度不明 6 2022/12/09 13:17
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
あなたにとってのゴールデンタイムはいつですか?
一週間の中でもっともテンションが上がる「ゴールデンタイム」はいつですか? その逆で、一週間でもっとも落ち込むタイミングでも構いません。 よかったら教えて下さい!
-
忘れられない激○○料理
これまでに食べたもののなかで、もっとも「激○○」だった料理を教えて下さい。 激辛、でも激甘でも。 激ウマ、でも激マズでも。
-
許せない心理テスト
私は「あなたの目の前にケーキがあります。ろうそくは何本刺さっていますか」と言われ「12本」と答えたら「ろうそくの数はあなたが好きな人の数です」と言われ浮気者扱いされたことをいまだに根に持っています。
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
物理で軽い棒"と言われたら質量無視していいってことなんですか? ほかにも物理用語でこう言われたらこ"
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
RL-C並列回路のインピーダ...
-
困ってます!物理の問題です。
-
定格トルクの算出
-
可動コイル型の検流計に関する...
-
減衰振動
-
大学物理の問題です
-
慣性モーメントについて
-
減衰係数の単位換算
-
電気回路-EとIが同相なるとき
-
物理の微分方程式についてです
-
ハイパスフィルタの出力電圧の導出
-
1.027の求め方について教えて下...
-
水素原子では陽子のまわりを1個...
-
剛体振り子の運動方程式を高校...
-
困ってます!物理の問題です。
-
ばねの振動数
-
運動方程式 m(d^2x/dt^2)+kx=0 ...
-
振動のQ係数とは何でしょうか?
-
開ループ伝達関数から交さ(コ...
-
RL直列回路の電流ベクトルの...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
複素振幅ってなんですか?
-
RL-C並列回路のインピーダ...
-
水素原子では陽子のまわりを1個...
-
RL直列回路の電流ベクトルの...
-
遮断周波数と時定数について質...
-
オイラーの公式
-
交流回路でjは、なぜ数字の前...
-
減衰係数の単位換算
-
リサジューの作図法
-
単振動の微分方程式 x=Acos(ωt...
-
減衰振動
-
回転運動の粘性抵抗の測定
-
半径がr[m]のタイヤが角速度ω[r...
-
xy平面上を運動する物体の位置...
-
慣性モーメントについて
-
直列共振回路 Q = f0 / Δf の...
-
サイクロイド運動について質問...
-
コイルに流れる交流電流の問題
-
バネ定数400[N/m]バネに質量1...
-
電荷qの荷電粒子が角速度ω、半...
おすすめ情報