No.3ベストアンサー
- 回答日時:
指数としてナニカ(この場合はe)の肩に乗っかっているモノには単位があってはダメなんだ、と知っておくと良いでしょう。
単位がない数値、すなわち無次元でなくちゃいけない。この大原則は、フーリエ変換においてももちろん要請されます。で、> 周期、角振動数どっち
そういう話が出るってことは、tを時間だと解釈しているということですよね。すると、(ωt)が無次元数になるためには、ωは時間の逆数の次元を持っていなくてはならんわけです。一方、周期は時間の次元を持っている。だから、ωが周期なわけがないのは明らか。ω/(2π)が周波数[Hz]、ωは角周波数[radian/s]です。
もちろん、応用によってはtの単位がメートル[m]だということもある。その場合、ω/(2π)は空間周波数[lp/m](line pair per meter)と呼ばれたりします。
> ω は正負どちらですか?基本的に正だと思う
「基本的に」というのがどういう意味なのかは分かりませんけど、f(t)が実数値関数だという話ですと、F(ω) + F(-ω) が角周波数ωのcosine成分の振幅、F(ω) - F(-ω) が角周波数ωのsine成分の振幅を表しています。だから、正負両方が必要です。
No.2
- 回答日時:
この質問は、「クジラのヒレは脚か?」という質問に似ています。
答える人の考え方によって、
歩くはおろか水中でも立つこともできない器官を脚とは呼ばない
という立場もあるだろうし、
進化の過程で脚から変化した器官で、同じ原基から発生し
運動器であることも同じ。あれは脚の一種だ
という立場もあるでしょう。
違いは、「脚」という言葉を拡大解釈するか否かです。
フーリエ変換の「角周波数」も同様です。
実フーリエ級数のときには当に初等物理での意味通りの
角周波数であったものが、フーリエ変換に移行する際に
似て非なるものに変わった。それを
狭義の角周波数ではない という立場も、
広義の角周波数である という立場もあり得るわけです。
ω<0 であっても F(ω)≠0 になり得ることが
「角周波数」の性質として認め得るかどうか、
人によって、考え方は違うのではないでしょうか。
No.1
- 回答日時:
フーリエ変換(フーリエ積分)の角周波数ωは正負ペアで考える。
負の角周波数に物理的意味はないが、実関数f(t)で表される音声信号などを複素数で処理すると数学的な取り扱いが便利だというのがその理由。
フーリエ解析の本は通常
実フーリエ級数→複素フーリエ級数→フーリエ変換
の順で説明される。実フーリエ級数から複素フーリエ級数を導出する過程を丁寧に読めば「角周波数ωを正負ペアで考える」ことの意味がわかるだろう。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 哲学 フォルダによる本質証明と述語証明 2 2023/10/10 00:53
- 数学 これ、何年生で習う内容でしょうか? 3 2024/05/01 08:58
- 数学 問題文 正n角形がある(nは3以上の整数)。この正n角形のn個の頂点のうちの3個を頂点とする三角形に 4 2023/03/22 14:57
- その他(法律) 振込手数料の負担先変更 7 2023/09/27 14:55
- 分譲マンション 当分譲マンションでは機械式駐車場の維持管理更新費が利用者負担になっていますが法律違反では? 2 2023/10/03 22:05
- その他(自然科学) 風車音の測定 3 2023/04/28 07:12
- 数学 図形問題です。教えて下さい。 7 2024/04/27 16:25
- 物理学 波動方程式のようなもの 1 2023/05/13 07:23
- 物理学 こまかいですけど 1 2024/07/08 18:25
- デスクトップパソコン 40年間の悩み キーボードにおいて初期値として漢字ローマ字変換に設定する方法 8 2023/05/08 14:50
このQ&Aを見た人はこんなQ&Aも見ています
-
餃子を食べるとき、何をつけますか?
みんな大好き餃子。 ふと素朴な疑問ですが、餃子には何をつけて食べますか? 王道は醤油とお酢でしょうか。
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
ほんとになんでうごくかわからない
数学
-
添付している画像の積分が解けません
数学
-
高校数学です。 m^2-11m-1が整数の平方となるような正の整数mを求めよという問題で、回答はこの
数学
-
-
4
この積分の計算がどこで間違っているのかを教えてください
数学
-
5
おしえてgooに図形の問題を投稿したら、削除されました。なぜでしょう?
数学
-
6
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
7
これは、log|ex+1|とはならないのですか?
数学
-
8
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
9
cosθ-cosαが正であることを示し方がわかりません。 ただし、-π/2<θ<π/2 0<α<π/
数学
-
10
対数
数学
-
11
iに絶対値がつくとどうなるのかを教えてください
数学
-
12
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
13
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
14
高校数学の確率が得意な方おられますか? 分母に来る数は大体合うのですが分子にくる数がよくわからず度々
数学
-
15
関数を定積分した値に絶対値とる か 関数の絶対値をとってから定積分する場合 値が異なるとこはあります
数学
-
16
この数学の問題解き方あってるか見てほしいです
数学
-
17
三角関数の変換で納得いかないところがあります
数学
-
18
数学を勉強すると論理的思考力が向上するという疑わしい主張が横行しているのはなぜですか?
数学
-
19
文字を含む三角関数の定積分の問題で理解できないところがあります
数学
-
20
微分係数の定義?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
e^(x^2)の積分に関して
-
積分の数式を声に出して読むと...
-
0の積分
-
高校の数学で積分できない関数
-
y=1/√xの積分を教えてください
-
1/x は0から1の範囲で積分でき...
-
e^(-x^2)の積分
-
e^(ax)の微分と積分
-
積分計算のdtとdxの違いがわか...
-
exp(ikx)の積分
-
積分においてxはtに無関係だか...
-
積分 e^sinx
-
複素積分の問題です。
-
積分の問題
-
球の体積を求めるときの積分範...
-
写真の赤線部についてですが、...
-
積分のパソコン上のの表し方...
-
∬1/√(x^2+y^2)dxdy を求めよ。
-
三角関数の積分
-
写真の問題で1/1-yの積分と1/1-...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報