はじめての親子ハイキングに挑戦!! >>

e^xを微分するとe^xとなるのは分かるんですが、e^x^2分の1が、まったく分からないです。e^2xを微分すると2e^2xとかは、わかるのですが、丁寧に教えてください。よろしくお願いします

このQ&Aに関連する最新のQ&A

A 回答 (3件)

e^2xを微分して2e^2xとなるのは


e^xを微分したものがe^xで、
f(g(x))を微分したものがg’(x)×f’(g(x))だからです。
元の式では、2xを微分した2が前についているわけです。
だからe^x^(1/2)はx^(1/2)を微分したものをかけてやればOKです。
    • good
    • 2
この回答へのお礼

分かりやすくありがとうございました。

お礼日時:2005/07/31 10:53

e^x^1/2を考えるにあたって


まず
e^f(x)を考えて見ましょう。
e^f(x)の微分は(f(x)の微分)をかければいいのです。
つまり、(f(x)の微分)×e^f(x) というわけです。

だから
e^x^1/2 を微分すると
(x^1/2の微分)×e^x^1/2 となりこれを計算すると
1/2×e^x^1/2 となります。

e の乗数は微分しても絶対に変わりません。
これは覚えておいてください。^^

この回答への補足

いいヒントありがとうございました

補足日時:2005/07/31 10:53
    • good
    • 1

exp{x}(=e^x)を微分すると、つまり、(d/dx)exp{x}=exp{x}となりますよね.ではexp{√x}をxで微分するわけですが、√xをtと置換してみましょう.


すると、(d/dx)exp{√x}=(d/dx)exp{t}=(dt/dx){(d/dt)exp{t}}と変形できますね.結局、t=√xをxに関して微分し、それをexp{t}(つまり、exp{√x})に掛けてやれば答えがでます.
    • good
    • 0
この回答へのお礼

自分の学力のなさが分かりました。もっとシッカリ勉強したいと思います。ありがとうございました

お礼日時:2005/07/31 10:55

このQ&Aに関連する人気のQ&A

^」に関するQ&A: e^(-x^2)の積分

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qeの微分の公式について

e^xの微分はe^xですが
e^f(x)の微分はf'(x)e^f(x)でいいのでしょうか?
ネットで調べたのですが、e^xの微分の公式の説明ばかりだったので教えてください

Aベストアンサー

あってますよ。
普通に検索すると、確かに見つけにくいですね^^
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Q分母が文字の分数を微分する方法を教えてください。

分母が文字の分数を微分する方法を教えてください。


8/xを微分すると、-8/x二乗になるようなんですけど、なぜそうなるのか教えてください。

数学は大の苦手なので、分かりやすくお願いします:(;゛゜'ω゜'):

Aベストアンサー

x^nをxで微分するとnx^(n-1)になるというのは習ったと思いますが、
それを利用します
(ちなみに記号^は累乗の記号です。a^bは「aのb乗」を意味します)。

8/x = 8x^(-1)と変形して、無理矢理x^nの形に直します。
x^nをxで微分するとnx^(n-1)になるので、
x^(-1)をxで微分すると-x^(-2)となります。
よって8x^(-1)をxで微分すると-8x^(-2) = -8/(x^2)となります。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q指数の付いた式の微分

ある参考書によると

u(x)=16*x^1/3

をxで微分すると

u'(x)=16/3*x^(-2/3)

と書いていますが、なぜそうなるのか
よく分かりません。

指数があるときの微分について何か公式の
ようなものがあったような気がしますが、
手元に本がありません。

微分についてお詳しい方ご教示願います。

Aベストアンサー

f(x)=x^a
を微分したとき、
f'(x)=ax^(a-1)
となります。

f(x)=x^3 を微分すると f'(x)=3x^2 になるのと同じです。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Qn次導関数の求め方

x^3・sinxのn次導関数を求めたいんですけどやり方がよくわかりません。これはライプニッツの公式をつかうらしいんですけど…帰納法じゃできないんですか?あとよろしければライプニッツを使った解法もおしえてもらえればうれしいです。よろしくお願いします。

Aベストアンサー

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法で証明しなくても一気に結果を求めることができます.

とはいうものの,実際この公式を適用するためには(*1)の右辺を見ればわかるように,個々の関数fとgについての1~n階微分までの情報はあらかじめ知っている必要があります.
この問題では個々の関数の微分は下のように
x^3 → 3x^2 → 6x→ 6 →0(以降すべて0)
sin(x) → cos(x) → -sin(x) → -cos(x) → …(以降繰り返し)---(*2)
簡単に求められます.しかもx^3の方は4次以上の微分は0なので,f=x^3, g=sin(x)とおくと(*1)の右辺でk=4以降の項は出てきません.すなわち,
D^(n)(x^3*sin(x))=x^3*D^(n)(sin(x))+C[n,1]*3x^2*D^(n-1)(sin(x))+C[n,2]*6x*D^(n-2)(sin(x))+C[n,3]*6*D^(n-3)(sin(x))
となります.sin(x)の微分は(*2)よりまとめて
D^(n)(sin(x))=sin(x-nπ/2)
とかけますので,
D^(n-1)(sin(x))=sin(x-nπ/2+π/2)=cos(x-nπ/2)
D^(n-2)(sin(x))=cos(x-nπ/2+π/2)=-sin(x-nπ/2)
・・・
のように変形しておけば,最終的に
D^(n)(x^3*sin(x))=x^3*sin(x-nπ/2)+3nx^2*cos(x-nπ/2)-3n(n-1)x*sin(x-nπ/2)-n(n-1)(n-2)*cos(x-nπ/2)
となることがわかります.

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法...続きを読む


このQ&Aを見た人がよく見るQ&A