【無料配信♪】Renta !全タテコミ作品第1話

X線において、多結晶と単結晶では回折パターンがどのように違うのですか??また、その理由を教えてください。リング状とスポット状の違いというふうに予想はしているんですが・・・。

A 回答 (1件)

XRDについての基礎は,ご存知と思いますので・・・


鏡による回折(反射)を思い浮かべてください。
もちろん,XRDではブラッグの式を満足する回折条件
でなければ,回折は起りませんが・・・
鏡の面に入射した光は,反射を起こしますよね。
しかし,鏡と水平に入射した光は回折を起こしません。
かりに,鏡を砕いて粉末にした場合,鏡の面に相当する
面が存在する確率が増大するわけです。したがって,粉末XRDでは,ほぼすべての面指数からの回折ピークを得ることができます。
逆に,単結晶の場合は,X線を回折する面指数には限りがあります。したがって,特定の方位だけのXRDパターンとなります。一度,図に描いて,考えてみてください。
    • good
    • 1
この回答へのお礼

今までできなかった考え方で考えることができました。とてもわかりやすかったです。ありがとうございます。

お礼日時:2002/07/15 10:06

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QX線回折・・・試料が粉末と固体による違い?

毎度毎度X線についてです。
イマイチ私の言ってる意味がわからないかもしれませんが、質問です。

 試料が粉末か固体かによる違いは何でしょうか?つまりですね、なぜ粉末状にするのか、ということです。固体を砕けば粉末になりますよね?固体では調べられないことが、粉末なら調べられるということなのでしょうか?
 本で調べたところ、多結晶体(粉末も)は回折が様々な方向におこるそうなのですが、それでしょうか?

Aベストアンサー

> 固体では調べられないことが、粉末なら調べられるということなのでしょうか?

上の記述で「固体」を「結晶」に替えれば、実験的な利便性という意味で、その通りと言えます。

Braggの回折条件 2d・sinθ=nλ (d:面間隔,θ:回折角,λ:波長) [*] はご存知と思います。また、一つの結晶の中には、面間隔の異なるBragg反射面が多数あり、それぞれが結晶に対すして固有の角度(面方位)をもっていることはよろしいでしょうか。

波長の決まったX線を、一つの結晶に当てることを考えて見て下さい。[*]の条件を満たすとき、そのBragg面の鏡面反射の方向に回折線が出ます。結晶中のBragg面はそれぞれ特定の方向を向いていますから、ある方向から単色X線を入れても一般に[*]は成立しません。そこで、入射X線の向きを変えながら、Bragg条件に合うθの面を拾い上げていくという操作が行われます。ただし、結晶中のBragg面は何通りもありますから、θスキャンのためには、常に入射線の鏡面反射となる方向の回折線だけを検出するようにします。これがディフラクトメータ法です。

しかし、このようなスキャンでは、結晶の置き方で決まる、ある仮定された一つの面についての回折条件(θ値)を探ることができるだけです。この結晶中の様々なBragg面の情報をそろえようと思えば、結晶の向きを僅かずつ変えながら、無数の測定を繰り返す必要が生じてしまいます。そこで考案されたのが、お尋ねの粉末法と呼ばれる手法です。結晶を粉々にすることで、全てのBragg面に対して、ディフラクトメータが検知する反射面に一致する確率を与えてしまえば、1回の測定で全ての面のθスキャンができ、結晶固有の回折線パターンが得られるというものです。(まさにコロンブスの卵!)

粉末にして向きがバラバラになっても、常に鏡面反射方向だけの回折を検出するように工夫すれば、Bragg条件の式がそのまま使えるというところがミソです。

> 固体では調べられないことが、粉末なら調べられるということなのでしょうか?

上の記述で「固体」を「結晶」に替えれば、実験的な利便性という意味で、その通りと言えます。

Braggの回折条件 2d・sinθ=nλ (d:面間隔,θ:回折角,λ:波長) [*] はご存知と思います。また、一つの結晶の中には、面間隔の異なるBragg反射面が多数あり、それぞれが結晶に対すして固有の角度(面方位)をもっていることはよろしいでしょうか。

波長の決まったX線を、一つの結晶に当てることを考えて見て下さい。[*]の条件を満た...続きを読む

Q単結晶、多結晶、非晶質体について

これらを実験的に判別する方法を教えて下さい。
調べたのですが、X線回析装置で判別することができるということしかわかりませんでした。
どうぞよろしくお願いします。

Aベストアンサー

簡単な方法としては、ご指摘のXRDが一番でしょう?
測定された回折ピークは、下記のようになるでしょう。
単結晶:試料のセッティングにより選択された面の回折ピークのみが出る。
多結晶:色々な面の回折ピークが出る。
非晶質:明確なピークは認められず、ブロードなピーク(ハロー)が見られる。

後、XRD以外の測定方法ですが、試料が光を通し、結晶が光学的に等方性で無いならば、偏光顕微鏡等で観察することにより判別できるかもしれません。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q単結晶について

結晶構造について勉強しています。

単結晶とはどのような結晶のことなのかよく分かりません。このような化学の分野はあまり勉強したことがないので詳しく教えてください。また、具体的な単結晶の例もいくつか教えてください。

これに関する参考文献、URL等もございましたら教えてください。よろしくお願いします。

Aベストアンサー

単結晶の前に、結晶の定義について考えてみたいと思います。
最初の段階であれば既に回答が寄せられているように「分子や原子が規則的に並んでいる」「規則的に配置している」という定義で十分かと思いますが、結晶構造について学ばれている方向けということでもう少し掘り下げて説明してみたいと思います。

いま例えば2種類の原子○と●を「規則的」に並べてみます。

●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
【図1】

と並んでいるものは結晶でしょうか。
並び方に規則性はありますがこれは結晶とは呼びません。「規則性」の中身をもう少し厳密に定義しなくてはならないわけです。
結晶工学では結晶のことを通常、「構成する原子・分子の配置が(空間的)並進対称性を有する固体」などと定義します。では「並進対称性」とは何でしょうか?

再び2種類の原子○と●を並べてみます。

・・・・・・・・・・・・・・
・・・●○●○●○●○・・・
・・・●○●○●○●○・・・(上下左右に無限に続く)
・・・●○●○●○●○・・・
・・・・・・・・・・・・・・
【図2】

図2でですが、上下方向に1マス(1行)ずらしたとすると元の図の配置に重なります。左右方向については2マス(左右どちらでもよい)ずらすとやはり元の配置に重なります。このようにある特定の距離だけずらしても同じ配置となる性質を「(空間的)並進対称性」といい、その距離のことを「周期」といいます。周期を有する構造(周期構造)を持つことが結晶の本質です。

次に「単結晶」について説明します。単結晶とは通常、「多結晶」の対義語として使われる用語です。
「単結晶(単結晶材料)」とは「その材料のどの部分を取り出しても、その結晶の方位が一定である材料」を指します。平たく言うならばその塊のどこを切り出しても、原子・分子の並んでいる向きが同じ、ということです。既に回答が寄せられているように半導体シリコンはその最も有名な例です。参考ページ[1]のページに工業的製法(チョクラルスキ法)の紹介がありますからご覧ください。
これに対し切り出す場所によって結晶軸が異なる材料が「多結晶」で、これはNo.2でmmmmaさんが「一つの塊の中で複数の結晶領域がある」と説明されている通りです。多結晶でも個々の領域(結晶粒)を取り出せばそれは単結晶です。
参考ページ[2]では同じシリコンでも多結晶シリコンを用いた太陽電池パネルが紹介されています。領域ごとに光の反射の仕方が異なるためステンドグラスのようなモザイク模様を呈します。

他の単結晶の例としては
多くの宝石(ダイヤモンド、サファイア、水晶など) 多くの半導体材料(シリコン以外にガリウムヒ素やガリウムリンなど) 岩塩 雪
などがあり、多結晶の例としては
ほとんどの金属(鋳鉄、アルミ合金など) セラミックス(アルミナ、ジルコニア、窒化ケイ素など) 通常の氷
などがあります。

宝石はなぜ単結晶なのでしょうか。(というか、なぜ単結晶の鉱物でないと宝石としての価値が出ないのでしょう?) 材料中に光が入射した際、もしその材料が多結晶であったなら、個々の結晶粒間の境界(粒界などと言います)で光が散乱され透明にはなりません。単結晶であるが故に透明となり価値が出てくるわけです。(注: 単結晶でも透明でないものはあります)
また同じ水が凍ったものでも、雪はなぜ単結晶で氷は多結晶なのでしょうか。雪は上空で、結晶の元となる小さな粒(核)に次々と他の水の分子が順々に規則正しく並んでできるものです。氷は一か所から凍り始めるとは限らず、複数地点から凍り始めると、そこから出発したそれぞれの領域は無関係な並び方(結晶方位)をすることになるからです。

この辺の話を網羅的に記述しているサイトは残念ながら見つけられませんでした。書籍についてはhonisuさんが目指される方向が分からないので難しいのですが、例えば
「結晶工学の基礎」http://www.shokabo.co.jp/mybooks/ISBN4-7853-2509-7.htm
あたりは悪くないと思います。

[1] http://www.sumcosi.com/laboratory/laboratory1.html
[2] http://www.greenpost.jp/099/00new/02/pv/

参考URL:http://www.shokabo.co.jp/mybooks/ISBN4-7853-2509-7.htm

単結晶の前に、結晶の定義について考えてみたいと思います。
最初の段階であれば既に回答が寄せられているように「分子や原子が規則的に並んでいる」「規則的に配置している」という定義で十分かと思いますが、結晶構造について学ばれている方向けということでもう少し掘り下げて説明してみたいと思います。

いま例えば2種類の原子○と●を「規則的」に並べてみます。

●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
【図1】

と並んでいるものは結晶でしょうか。
並び方に規則性はありま...続きを読む

Qヤング率測定実験における尺度変化の平均値の算出法について

先日ユーイングの装置を使ったヤング率の測定実験を行ったのですが、
おもりの増加・減少による試験棒(鉄)のたわみの大きさの尺度変化の平均値を求める計算で
その計算法は増減重による尺度変化の平均がそれぞれa(初期状態)、b、c、d、e、fであるのに対してd-a、e-b、f-cの平均値を求めるというものでした。
何故a、b、c、d、e、fを足して5で割るという方法ではなくわざわざこのようなやり方をしたのでしょうか。
調べてみるとd-a、e-b、f-cはそれぞれ「おもりの質量の中央値に対する変化」らしいのですがどういうことかわかりません。
解説や考えるヒントを教えて下さい。

Aベストアンサー

言われてみると「なあんだ」ということになるかと思います。
あと一つ確認なのですが、a~fはたわみの読みそのものなのかその差分なのか質問文ではっきりしません。もし直接の読みだとすると、a~fを足して5で割って得られた数字には物理的な意味がないことになります。直接の読みでなく差分であればd-a, e-b, f-cを作って平均するとほとんどゼロになってしまいます。念のためご確認下さい。

以下は本サイトで、以前に私が類似の質問に答えた内容を再編集したものです。

さておもりを全く乗せないときのたわみ量をy[0]、一つ乗せたときのそれをy[1]、以下n個乗せたときのそれをy[n]とします。

最初のおもりを乗せたときのたわみ量の増分は
y[1]-y[0]   (1)
次のおもりを乗せたときの増分は
y[2]-y[1]   (2)
その次のおもりについては順に
y[3]-y[2]   (3)
y[4]-y[3]   (4)
となります。
sumosb004さんの実験では5個までおもりを乗せていますから、増分の最後は
y[5]-y[4]   (5)
となります。

さて200gのおもりに対するたわみ量のデータが5つ得られましたので、これを平均してみましょう。(1)~(5)を足して5で割ればよさそうなのですが・・・
{y[1]-y[0]+y[2]-y[1]+y[3]-y[2]+y[4]-y[3]+y[5]-y[4]}÷5
={y[5]-y[0]}÷5   (6)
となって、実際に活用されているデータはy[5]とy[0]だけ、すなわち2点だけで平均を取っていることになってしまいます。y[1]~y[4]はせっかくデータを取ったのに計算に入ってきていません。

これは差分データを取って最後に平均するときにしばしば遭遇する落とし穴です。
ではどうすればよいのかというと以下のようにやります。データは加算か減算かで1回だけ使い、差し引きでデータが消えてしまわないようにするのです。

今回はおもりを5個乗せていますから、y[0]~y[5]までの6つのデータがあります。それを上半分(y[5]~y[3])と下半分(y[2]~y[0])の2グループに分け、以下のように組み合わせて
y[5]-y[2]   (7)
y[4]-y[1]   (8)
y[3]-y[0]   (9)
の3つの差分を作ります。いずれもおもり3個分に対するたわみ量の増分に相当し、sumosb004さんのおっしゃるd-a, e-b, f-cに(おそらく)対応します。これを図的に表すと下のようになります。(等幅フォントでご覧下さい)

y[0] y[1] y[2] y[3] y[4] y[5]
─┼─┼─┼─┼─┼─┼─┼─┼
     ┗━━━━━┛→(7)
   ┗━━━━━┛→(8)
 ┗━━━━━┛→(9)

(7)~(9)を足して平均をします。この平均は
(y[5]-y[2]+y[4]-y[1]+y[3]-y[0])÷3   (10)
ですから、(6)のように差し引きで消えてしまうことはありません。ただし(10)はおもり3個分に対する歪みの増分ですから、おもり1個分に換算するにはさらに3で割って下さい。

あとは計算式に当てはめればヤング率を求めることができます。
またNo.1で「線形性からのずれ」の指摘がありますが、上記の説明を読めばそれはせいぜい副次的な問題でしかないこともお分かりかと思います。

参考URLのページなどもぜひ読んでみて下さい。
http://www.kdcnet.ac.jp/buturi/kougi/buturiji/young/exp1.htm

参考URL:http://www.kdcnet.ac.jp/buturi/kougi/buturiji/young/exp1.htm

言われてみると「なあんだ」ということになるかと思います。
あと一つ確認なのですが、a~fはたわみの読みそのものなのかその差分なのか質問文ではっきりしません。もし直接の読みだとすると、a~fを足して5で割って得られた数字には物理的な意味がないことになります。直接の読みでなく差分であればd-a, e-b, f-cを作って平均するとほとんどゼロになってしまいます。念のためご確認下さい。

以下は本サイトで、以前に私が類似の質問に答えた内容を再編集したものです。

さておもりを全く乗せないときのた...続きを読む

Qτ ←この記号について教えてください

この記号「τ」は何を表しているのでしょうか?
読み方は「タウ」でいいのでしょうか?

お詳しい方どうか教えてください。

Aベストアンサー

読み方は「タウ」で結構です。
英語の「T」に相当します。

x,y,zと同様に何に使っても間違いではありませんが、Tに関連する用途が多いでしょう。

一般的には、時間、温度、換算温度、τ中間子というのありましたし、材料力学の世界では、せん断応力をτで表わします。

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

Q電流計の0.5級ってなんですか?

タイトルどおりです。いろいろと調べたのですが、なかなかいい答えが出てなかったのです。早急に返事ください。お願いします!

Aベストアンサー

日本工業規格JISでは,電圧計,電流計および電力系に関して最大目盛に対する誤差の限界を,パーセントで表し,以下の5階級に分けています.

0.2級計器…標準用.精密実験室に置かれ移動しないもの.
0.5級計器…精密測定用.携帯用計器といわれるもの.
1.0級計器…準精密測定用で,小形携帯用計器や,大形の配電盤計器.
1.5級計器…普通級.工業の通常測定用,パネル用計器.
2.5級計器…小形パネル計器がこれに属する.

例えば,0.5級の定格電流100Vの電圧計なら,等分目盛の場合,最大目盛100Vの±0.5%すなわち±0.5Vの誤差が,摩擦などのため全目盛範囲で許されています.電流計についても同様に考えればいいと思います.

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Qエクセル、散布図でデータの一部のみの近似直線を書きたい

(1、5)、(2,8)、(3、16)、(4、25)、(5、37)というグラフをかきました。
ここでグラフのプロットは全てのデータについて表示されたままで、(3、16)、(4、25)、(5、37)だけについての近似直線を描き、式やR2値を表す方法は無いものでしょうか。
(1、5)、(2,8)というデータを消せば目的の式は得られるのですが、(1、5)、(2,8)というプロットをグラフに残したままにしたいのです。
どうぞよい知恵をお貸し下さい。

Aベストアンサー

1系列の一部のデータ範囲を対象に近似曲線を引くことは出来ないように思えます。便宜的な方法として以下が考えられます。お試しください。

■グラフの一部に近似曲線を追加する

全てのデータ範囲を選択する
|グラフウィザード 2/4 「グラフの元データ」|系列タブ|
系列1
 すでに全てのデータ範囲が対象となっている
系列2
 |追加|
 「Xの値」のボタンを押して後半のX値のセル範囲を選択する
 「Yの値」のボタンを押して後半のY値のセル範囲を選択する
グラフが作成される
全てのデータ範囲(系列1)と後半のデータ範囲(系列2)は重なっている
系列2へ近似曲線を追加する
 グラフ上、後半のデータ範囲の1要素を右クリック
 |近似曲線の追加|
 パターン・種類・オプションを指定する

■検討事項

・凡例・マーカー
無指定で系列に「系列1」・「系列2」という名前が付きます。同じ名前にすることは出来るようですが、系列2のみを消すことは出来ないようです。系列名の色を白にして見えなくする、プロットエリアのマーカーも二系列を同色とする、など考えられます。

・近似線
私は近似曲線のオプションに詳しくありませんが、全てのデータ範囲に対する近似線を引いたとして、後半のデータ範囲に対する近似線と重ならない(同形ではない)と思います。

1系列の一部のデータ範囲を対象に近似曲線を引くことは出来ないように思えます。便宜的な方法として以下が考えられます。お試しください。

■グラフの一部に近似曲線を追加する

全てのデータ範囲を選択する
|グラフウィザード 2/4 「グラフの元データ」|系列タブ|
系列1
 すでに全てのデータ範囲が対象となっている
系列2
 |追加|
 「Xの値」のボタンを押して後半のX値のセル範囲を選択する
 「Yの値」のボタンを押して後半のY値のセル範囲を選択する
グラフが作成される
全てのデ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング