No.2ベストアンサー
- 回答日時:
フェーザ表示ではなく、極形式です。
複素数は、x+yi (x,yは実数) という直交形式で表すことも、
r e^(iθ) (r,θは実数) という極形式で表すこともできますが、
極形式で r e^(iθ) である複素数を r∠θ と表記することを
「フェーザ表示」といいます。
No.1
- 回答日時:
フェーザは特定ある周波数の、基準となる位相を持つ正弦波に対しての「位相差」を複素数の「回転」であらわしますが、
フーリエ変換のものは波の位相回転そのものを複素数の回転であらわしてます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 フーリエ変換、逆変換の「2π」の扱いについて 3 2022/10/07 08:31
- 数学 f(x)のフーリエ変換をF(ξ) g(x)のフーリエ変換をG(ξ)とする時、 ①f(ax+b)のフー 1 2023/02/06 18:25
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
- 哲学 フォルダによる本質証明と述語証明 2 2023/10/10 00:53
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
- 数学 f(x)=e^(-ax+b) のフーリエ変換をフーリエ変換の定義に従って計算せよ。但し、a>0、bは 1 2023/02/06 18:26
- 数学 フーリエ級数係数 2 2023/06/04 14:29
- 物理学 どのような意味 2 2022/10/04 12:29
- 物理学 複素フーリエ級数展開からフーリエ変換 1 2023/05/12 16:15
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
【お題】 ・存在しそうで存在しないモノマネ芸人の名前を教えてください
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
ホテルを選ぶとき、これだけは譲れない条件TOP3は?
ホテルを探す時、予約サイトで希望条件の絞り込みができる便利な世の中。 あなたは宿泊先を決めるとき「これだけは譲れない」と思う条件TOP3を教えてください。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
数学の説明で Complimentary eq Particular eq Finel Sol eq
数学
-
画像の説明で式中の*は掛け算、'は微分を表しているのでしょうか? あと他にもアンダーバー、_とかも出
数学
-
f(x)=(px+q)sin(2x)/(ax+b) の問題
数学
-
-
4
√2が無理数であることの証明では、背理法以外には方法はないのでしょうか?
数学
-
5
いみがわからない。
数学
-
6
数学をずっと勉強していますが、あまりできるようになりません
数学
-
7
微分係数の定義?
数学
-
8
積分定数どこまで
数学
-
9
(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δ
数学
-
10
数学II θの範囲に制限がないとき、次の不等式を解け。 √3tanθ>1 この答えはπ/6+nπ
数学
-
11
数学II この問題の②について cos(θ+5π/3)=sin{(θ+5π/3)+π/2}となってい
数学
-
12
三角不等式
数学
-
13
こういう積分って
数学
-
14
写真中段に、1.63式を見るとω>0ならrに対して〜〜垂直な方向になるとありますがこれは式をどのよう
数学
-
15
確率の当たり前
数学
-
16
n 個のサイコロを同時に振る。 ただし、nは正の整数とする。 出た目の数の積が6の倍数となる確率を求
数学
-
17
(2)の問題なのですが、解答には3列目に書かれた数が7m-4、5列目に書かれた数が7n-2と表す、と
数学
-
18
1+2+3+…=?
数学
-
19
途中の整理がわかりません。教えてください dx1(t)/dt=x1(t)~2x2(t) ・・・(1)
数学
-
20
素数(合成数の並びの最大数)について
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「強度」は高い?強い?
-
yの二乗をXで微分したら2y・y' ...
-
積分定数Cとは一体なんですか?
-
合成関数の微分を使う時と、使...
-
数Iの問題です cosθ=5分の3の...
-
「強度が弱い」という文はおか...
-
電気関係の質問なんですが・・・
-
1/cos^2θを微分したら何になり...
-
y=logX+1 の微分教えください ...
-
(4)でなぜcosxsin^4xが偶関数な...
-
ある断面積を持つ1本の円筒管の...
-
微分可能ならば連続ですが、 不...
-
三角関数
-
三角関数の合成の問題について...
-
縞鋼板の曲げ応力度・たわみに...
-
0≦θ<2πの時の次の方程式をとけ...
-
sin^2xとsinx^2は同じと聞きま...
-
フェルミ分布の微分形
-
数学の問題を教えてください π/...
-
柿の木は折れやすい
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「強度」は高い?強い?
-
yの二乗をXで微分したら2y・y' ...
-
合成関数の微分を使う時と、使...
-
「強度が弱い」という文はおか...
-
積分定数Cとは一体なんですか?
-
電気関係の質問なんですが・・・
-
縞鋼板の曲げ応力度・たわみに...
-
数Iの問題です cosθ=5分の3の...
-
sin^2xとsinx^2は同じと聞きま...
-
y=logX+1 の微分教えください ...
-
振幅比の計算
-
微分可能ならば連続ですが、 不...
-
1/cos^2θを微分したら何になり...
-
ヤング率と引張強度について す...
-
テーブル構造を支える脚の材料...
-
柿の木は折れやすい
-
座屈とたわみの違いを簡潔に教...
-
双曲線関数は、実生活上どのよ...
-
y=tan^2 x ってどうやって微分...
-
弾塑性解析と弾性解析
おすすめ情報