プロが教えるわが家の防犯対策術!

学生です。

実験するにあたって初期剛性を実験地と計算値で比較するのですが、なぜ計算値のほうが大きい値になるのでしょうか??

また初期剛性はどのような式で計算できますでしょうか??

P=kδのkが初期剛性ならば、k=EIであらわされるとなっていましたが、EIとは曲げ剛性のことではないのでしょうか??この場合、初期剛性=曲げ剛性なのでしょうか?

せん断剛性は考慮しなくてもいいのでしょうか??
またせん断剛性はどのように表されるのでしょうか??

このQ&Aに関連する最新のQ&A

A 回答 (4件)

>コンクリートゲージをせん断変形方向に貼り付けて、載荷した場合、せん断ひび割れ応力(変形量からの変換値)よりも高い応力までひび割れが発生しなかったです。



回りくどい表現で申し訳ありません。
申し上げたいのは、ポアソン比測定のための供試体、なんでも構わないです500×500の平板状のもの。これに、せん断変形を加えて得られたポアソン比に基づいたせん断剛性(=A)。
これと、実大耐震壁で試験を行い、この際のコンクリート歪から逆算されるポアソン比(=B)は、理論上は同じになるはず。
しかし、AとBは同じにならず、B>Aとなることがある。
すなわち、耐震壁周囲の境界梁、寸法効果をどうしても加味しなければ、設計に応用できる結果が得られない。
ということをです。

せん断剛性は、たしか、
G=E/2(1-γ) では。
γ;ポアソン比

単純に、
>初期剛性=曲げ剛性+せん断剛性
です。
これは、間違っていないと思います。
初期に限らず部材の応力と変形は、曲げとせん断の総和だと思います。

しかし、実験では、変形量しか判らないので、
曲げ変形 と せん断変形
を分離して考えないとなりません。
しかし、これは大変難しいから耐震壁では、あえてせん断破壊させてませんか?
といいますか、曲げ破壊する耐震壁は、低耐力で頭うちするんで意味が無いのでしょうか?
(自分でも、こんがらがってきました・・・)

で、またはじめに戻れば、
計算による曲げ剛性とせん断剛性、これと実験での結果との比較を行う。
これが実験を行う意味の全てではないか、私は考えます。
(計算どおりの剛性評価=変形量評価=耐震性能評価 が、可能であれば、世の中、”推定式”なるものは無い)

わたしも考え続けます・・。
    • good
    • 0
この回答へのお礼

丁寧な説明どうもありがとうございました。

実験地と計算値が同じにならないということは当然のことですよね。
ながなが質問してしまいすみませんでした。

これからもっともっと勉強していきたいと思います。
どうもありがとうございました。
また疑問が生まれたら、質問させていただきます。

お礼日時:2008/07/25 12:58

2です。


少し、考えていたのですが、
はじめのご質問内容で、EI=曲げ剛性。
梁部材等は、EIが剛性評価の指標になる。

しかし、耐震壁では、曲げよりも、せん断が支配的になると思いました。

やっぱり、耐震壁であればせん断剛性の適切な評価が必要不可欠であると思います。
でないと、予期せぬ破壊モードでの破壊(実験とは別ですが)により崩壊形が形成されてしまう。

私が研究施設にいたのは10年位前ですが、実務上耐震壁の扱いは、
難しいです。
その、耐震壁のせん断剛性低下率がうまくモデル化されるとありがたいのですが。
期待しております。
    • good
    • 0

なるほどです。


RC耐震壁、正負繰り返し載荷ということですね。

私は、今までに
・RC 柱梁接合部せん断
・RC 短柱繊維補強せん断
・SRC 柱脚曲げ
等々の載荷実験の経験がありますが、
確かに、初期剛性(計算値)>(実験値)
になりました。

ひび割れが発生するまでの剛性=初期剛性 の定義として、
試験体の歪計測を行いながら剛性評価したことがありますが、
計算値では表現できない、(考慮されない)
コンクリートの歪があったのではないでしょうか?

コンクリートゲージをせん断変形方向に貼り付けて、載荷した場合、せん断ひび割れ応力(変形量からの変換値)よりも高い応力までひび割れが発生しなかったです。

>RCの場合のみはせん断剛性も考慮しなければいけないということでしょうか?
この件については、せん断力が支配的になる部材では、SでもRCでも考えないわけにはいかないと思います。
構造設計に応用させるのであれば、地震力による部材への入力せん断力により例えば接合部の回転変形を算出、耐震壁であれば、せん断系の破壊は望ましくないでしょうから、同様にせん断剛性を評価する必要があるかと存じます。

>(入力せん断力/せん断変形)では実験値からしか求められないのではないのでしょうか?
これは、意見が分かれるところかもしれません。材料特性から算出されるポアソン比から、せん断剛性は計算できるかと思いますが、ところが、実際実験に供してみると、計算値を過小・過大評価することがある。そこで、仕方なく?各種耐力推定式では、部材形状・応力条件(軸力等)に応じ係数を掛けているのでは?

>(入力せん断力/せん断変形)はP=kδのkになってしまい、それは初期剛性になってしまうのではないのでしょうか?
でも、載荷STEP進行に従い、当然剛性は落ちてくるかと思います。実験では、剛性低下は、なだらかなカーブを描く傾向になるかと思います。しかしこれでは、モデル化は到底出来ないので、kは、初期ひび割れまで、主筋降伏まで、最大変形までの3つに剛性を分ける(トリリニア)とかで、評価せざるを得ないのではないでしょうか。
つまり、
P=kδのk のkは
初期剛性でもあり、ひび割れ後剛性でもあり、終局時剛性でも有るのでないでしょうか。

この回答への補足

丁寧な説明ありがとうございます。

>コンクリートゲージをせん断変形方向に貼り付けて、載荷した場合、せん断ひび割れ応力(変形量からの変換値)よりも高い応力までひび割れが発生しなかったです。

すみません。ここの部分の意味がよくわからなかったので、もう少し噛み砕いて説明お願いできますでしょうか?本当にすみません。

あと、初期剛性の算定式というものはないのでしょうか?
曲げ剛性はEIで表すことができます。せん断剛性は曲げ剛性の様に式では表せないのでしょうか?また、

初期剛性=曲げ剛性+せん断剛性

と言った具合に単純には表せないのでしょうか??

いまいちわかってなくてすみません。

補足日時:2008/07/24 12:25
    • good
    • 0

何の、どのような実験なのかがわかりませんが、何らかの部材の載荷試験(S、RC、SRC??)ということでよろしいでしょうか。

曲げ剛性を初期剛性にしているのだから、S梁なのでしょうか。

初期剛性について
>実験するにあたって初期剛性を実験地と計算値で比較するのですが、なぜ計算値のほうが大きい値になるのでしょうか??
測定機器が何を使用されているかわかりませんが、ストレインゲージか何かでしょうか?
載荷にあたり計算による剛性と、実験値とが相違することは、私も経験してきました。載荷当初は、実験対象部材以外の変形が進むためではないかと思われますが、どうでしょうか?

EIは確かに曲げ剛性です。
しかし、これが初期剛性とは限りません。RCであれば、初期せん断ひび割れまでを通常初期剛性として評価します。

んー。
せん断剛性も考慮必要です。
せん断剛性ならば、
(入力せん断力/せん断変形)でよいのではないでしょうか。

すいません。
回答を試みたものの、いまいち回答になっていません。

この回答への補足

RCの正負交番繰り返し水平荷重を加える実験です。(耐震壁)
しかし建築学会の論文を見る限りでは、SもCFTもすべて計算値のほうが大きい値でした。

RCの場合のみはせん断剛性も考慮しなければいけないということでしょうか?

(入力せん断力/せん断変形)では実験値からしか求められないのではないのでしょうか?
(入力せん断力/せん断変形)はP=kδのkになってしまい、それは初期剛性になってしまうのではないのでしょうか?

補足日時:2008/07/22 09:24
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q剛性を表す式

建築士独学中です。

剛性は通常 k = EI で表せるとありました。
これは例えば、片持ちばりの自由端に集中加重がかかったときの変位が 3PL^3/EI となった時でも k = EI のみを指して、たわみ δ = 3PL^3/k となるということでいいのでしょうか?
http://www.fukuicompu.co.jp/fcmweb/daijiten/frame.asp?id=621&IsKW=true

一方、層剛性(水平剛性)を扱うときでは k = 3EI/L~3 等、長さや係数も含めた式になっているので、層間変位 δ = 力/k となってます。
(kは単位変位を生じさせるための力)
http://www.19get.com/user_19get/update/contents/webcourse/05_rikigaku/10_koyuusyuuki.html

同じ剛性でも意味が異なると考えていいのでしょうか?
また、ばね剛性、曲げ剛性、ねじり剛性という言葉もありますが、それらはどちらに分類されますか?

Aベストアンサー

剛性とは、単位変位を生じさせるための外力の大きさと定義されています。
この逆のことばで単位外力の時に生じる変形を柔性と呼びます。

F=kδ (F:外力、k:剛性、δ:変位)
でδを単位変形1とするとF=kとなります。
つまりk=F/δです。

片持ち梁の場合も、k=F/δから求めることになります。

バネ剛性とは、一般に建物をモデル化したときにバネと質点で表すモデル化を行います。このときの剛性をバネ剛性といいます。
曲げ剛性は曲げという外力に対するもので、せん断に対してならせん断剛性となります。
ねじり剛性というのはねじれは回転ですので、単位変形ではなく、単位角度に対して必要な外力の大きさを示しています。

用語としては1つです。

Q強度と剛性の違いは?

単純な質問ですが、強度と剛性って意味合いが違うのか知りたいです。
広辞苑で調べても言葉の意味の違いが分かりません。
同じようなことで、「・・・思う」と「・・・考える」も意味合いが違うんですか?

日本人ですが、日本語難しいです。

Aベストアンサー

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり、「強度」には実にいろいろな種類がありますが、「剛性」とは多くは構造体がこれに加わる外力によって変形しないように、「いろいろな種類の強度を組み合わせて作り出した総合的な強度」といったらいいかと思います。もちろんニュアンスの問題ではありません。
 
 「剛性」とは変形しない強さ.....これは例えば、自動車のボディなどといった構造体に剛性を持たせるには、路面の凹凸などから車輪を通じて伝わってくる振動や強い衝撃、風圧、遠心力や慣性、衝突時の衝撃といった「外力」によって車体がつぶれたり伸びたり、あるいはれじれたり歪んだりしないように(これが剛性)、圧縮強度、引張強度、ねじれ強度、など種々の「強度」をそれぞれ高める必要があります。

 また材料には弾性(バネの性質や弾力)というものがありますが、「外力」によって材料が一時的にバネやゴムボールのように変形することで、構造体全体が一時的に変形しないようにする必要もあります。

 繰り返しますと、こうした「種々の強度」をそれぞれ高めることで「剛性」は高まります。

 しかし、種々ある「強度」の中でも「磨耗強度」だとか「耐環境性」といった「強度」は直接「剛性」には関係ありませんね。ここのところをご理解下さると、ただのニュアンスの違いだけでないことがお分かりいただけると思います。

 とても技術的な話でさぞ難しいことと思いますが、わたしも技術分野の方はともかく、それをご説明する「国語」方が危なっかしいので、その辺はお許し下さい。

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Qコンクリートの単位容積重量はいくらぐらい?

一般的なコンクリート塊の単位容積重量はおよそどれぐらいですか。
できたら、Kg/立方mで教えてください。

Aベストアンサー

コンクリートの単位容積重量(正式には単位容積質量)はコンクリート中の
砂、砂利、の質量とコンクリートの乾燥具合によって変わってきます。

現在日本で使われてるセメント、砂、砂利の比重から考えて2300~2400Kg/立方m
と考えて良いでしょう。

特殊な用途があれば軽いコンクリート、重いコンクリートも作ることが出来ます。
元生コンクリート技術に従事していました。

Q降伏が発生する時の曲げモーメント

鉄筋の入っていない一様な長方形断面を持つ部材に曲げモーメントMが作用している時、
(1)断面内で最初に降伏が発生する時の曲げモーメントMy
(2)すべての断面が降伏した時のモーメントMp
を求めよ、という問題があるのですが、よく分かりません。
どなたか教えて下さい。

Aベストアンサー

#2 です。申し訳ありません。タイプミスです。


 (2)の場合、降伏応力=Mp×M/Z (Wは塑性断面係数)としたとき、長方形断面なら、W=(bh^2)/4 となります。


 (2)の場合、降伏応力=Mp×M/Z (Zは塑性断面係数)としたとき、長方形断面なら、Z=(bh^2)/4 となります。
 W→Z

Q剛性低下率について

こんにちわ。学生です。

鉄筋コンクリートのM-φグラフで、クラック時までの勾配をEIとします。クラック時から降伏時までの勾配をαEI、降伏時から終局時までの勾配をα´EIとするとき、α´=0.001と書いてありましたが、これはP-δグラフ、M-δグラフどちらのグラフでもα´(第3剛性低下率)=0.001といえるのでしょうか?

Aベストアンサー

今日は cyoi-obakaです。

私が構造を勉強したのは昔のことで、記憶が薄いので的確な回答になるかどうか? 不安なのですが………

M-φの場合とP-δやM-δのグラフでは、曲線成分が全く異なりますから、降伏以降の剛性低下率αyが P-δやM-δに反映する事はありえませんヨ!

降伏後のP-δやM-δの挙動は、RC造の場合、最大荷重=破壊とはなりません。
RCの場合、靭性(塑性)設計とする場合と剛性(強度)設計する場合とで、PーδやMーδの線形が異なります。
それは部材構成の違いに依ります。剛性の違いではなく、塑性変形能力の違いです。
従って、荷重ー変位曲線上は、剛性低下率の判断は不可でしょうね!

以上、参考意見ですが、どなたかフォローがあればお願いします。

Q建物固有周期

建物の固有周期の概算で(RC造の場合)

建物高さ(m)×2%= 固有周期(秒)

この式の根拠は何でしょうか?

建築基準法・施工令・告示などで決まっているのですか?
あるいは、日本建築学会など、どこかの団体が提唱しているものですか?

教えて下さい。宜しくお願い致します。

Aベストアンサー

建設省告示第1793号 昭和55年で明記されています。

Q弾塑性解析と弾性解析

弾性解析と弾塑性解析の2つで解析を行うメリット・理由はなんでしょうか?

実社会にある物体は弾塑性体ですか?

たとえば、曲げ試験を行って、同じ荷重をかけて、最大の引張応力を調べるといった場合、
弾塑性解析の方が、弾性解析に比べて、最大引張応力が低くなりますよね?

これは塑性変形が起きたからであると思いますが、もっと原理的な解答はないのでしょうか?

また、弾性解析と弾塑性解析による応力差が、弾塑性体にとっての残留応力といえるのでしょうか?





ご回答よろしくお願いします!!

Aベストアンサー

対象とするものが何であるかで違ってきますが、

現実世界にあるもので、弾性解析が、まったくそのまま通用するものは、ほとんどないと言ってよいでしょう。

たとえば、ボルト・ナットで2枚の金属板を引き寄せて止めるとき、ボルトとナットの山は必ず塑性変形しています。というのは、ボルトを絞めたとき、ボルトは伸びてナットは縮みますから、力がかかっていないときボルトとナットの山がぴったりかみ合っていても、絞めた状態(弾性変形の範囲)では山のピッチが微妙に違って、一部の山しか触れあわないことになります。このまま、どんどん締めていって塑性変形まで進むとすべての山がかみ合ってボルトの強度式が成立する状態になります。

それ以外のものでも、簡単な圧縮力の計算でも、単純にσ=P/Aで圧縮応力が計算できるはずはなく、接触面が塑性変形して全体が触れ合う状態ではじめて前式が成立します。
塑性解析の先進国であるイギリスの建築の計算は(地震がない国であるのに)、塑性設計法で柱梁の断面を決定しています(それなりに安全率を大きくとります)。ただし応力は弾性解析の値を使用しています。(その程度の精度で良いということでしょう)

では、弾性解析をする意味はと言うと、
まず、計算が簡単なので(線形計算が成り立つ)全体の応力をざっと求めるには便利なこと。
また、塑性解析では変形が求められないので(コンピュータの塑性解析の変形は、答えを出すために仮に決めた値です)どの程度の変形になるか見当をつけるのに便利なこと。
があるでしょう。

対象とするものが何であるかで違ってきますが、

現実世界にあるもので、弾性解析が、まったくそのまま通用するものは、ほとんどないと言ってよいでしょう。

たとえば、ボルト・ナットで2枚の金属板を引き寄せて止めるとき、ボルトとナットの山は必ず塑性変形しています。というのは、ボルトを絞めたとき、ボルトは伸びてナットは縮みますから、力がかかっていないときボルトとナットの山がぴったりかみ合っていても、絞めた状態(弾性変形の範囲)では山のピッチが微妙に違って、一部の山しか触れあわないことに...続きを読む

Q降伏点の求め方

金属材料の引張試験において、上降伏点が明瞭に現れなかった場合、どのようにして降伏点を求めればよいでしょうか?

Aベストアンサー

便宜的な方法になるようですが、以下のサイトが参考になると思います。
http://oshiete.eibi.co.jp/kotaeru.php3?q=430303

http://sus3041.web.infoseek.co.jp/outside/column/tensile_test.htm

参考URL:http://sus3041.web.infoseek.co.jp/outside/column/tensile_test.htm

Q降伏点 又は 0.2%耐力とはなんですか?

降伏点 又は 0.2%耐力というものを教えて下さい。
SUSを使って圧力容器の設計をしようとして、許容引張応力とヤング率だけでいいと思っていましたが、どうも降伏点 又は 0.2%耐力というものも考慮しなければいけないと思ってきました。
どなたかご助言お願い致します。

Aベストアンサー

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現れます。
 これを降伏と呼びます。

 一般に設計を行う場合は、降伏強度に達することをもって「破壊」と考えます。
 降伏強度は引張強度より低く、さらに降伏強度を安全率で割って、
 許容応力度とします。大きい順に並べると以下のような感じです。

 引張強度>降伏強度>許容応力度

●0.2%ひずみ耐力
 普通鋼の場合は降伏点が明確に現れます。
 引張荷重を上げていくと、一時的にひずみだけが増えて荷重が抜けるポイントがあり
 その後、ひずみがどんどん増え、荷重が徐々に上がっていくようになります。

 ところが、材料によっては明確な降伏点がなく、なだらかに伸びが増えていき
 破断する材料もあります。鋼材料でもピアノ線などはこのような荷重-ひずみの
 関係になります。

 そこで、このような明確に降伏を示さない材料の場合、0.2%のひずみに達した強度を
 もって降伏点とすることにしています。

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現...続きを読む


人気Q&Aランキング