![](http://oshiete.xgoo.jp/images/v2/pc/qa/question_title.png?a65a0e2)
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
sin、cos、tan のグラフを頭の中に叩き込むこと。
sinとcosはどこで交わって、最大値、最小値がどこで、符号がどこで変化するのかも頭の中に入れること。
tanはどこで0になったり-1や1の値をとるのか・
これは三角関数の基本的なことなので、絶対に覚えておかないといけないです。
cosθの条件が90°≦θ≦180°とありますから、この範囲でのcosθの値は-1≦cosθ≦0です。
三角関数はθの条件で、答えのふるい落とし・選別する問題がよくでますよ。
No.1
- 回答日時:
単位円を描いてみると分かり易いです。
cosθ=x/rなので、r=1だとcosθ=x。
なので、90~180度の時はcosθはマイナスになることが分かりますね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 三角比の相互関係「sinA^2+cosA^2=1」が直角でなくても成り立つ理由について。 これは、三 8 2022/03/31 09:22
- 数学 三角関数教えてください! 3 2022/05/06 19:46
- 数学 写真の1/cos^2θ=1+tan^2θはコサインとタンジェントの相互関係の式なのはわかります 問題 2 2022/08/04 03:07
- 数学 数学の質問です。 円に内接する四角形ABCD において, AB=2, BC = 1, CD = 3, 3 2023/04/18 18:28
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- 数学 数学 三角比 sin80°もsin110°もどちらもcos10°ですか? sin(90°+θ)=co 5 2023/05/07 01:44
- 数学 sin(45°-x)=sin(x+135°)が成り立つと思うのですが、 これを加法定理を使わずに(三 4 2023/05/25 12:34
- 数学 数学の三角比についての質問です。 (以前質問してくれ方ありがとうございまし た) 以前の回答何度もよ 4 2023/04/01 02:47
- 数学 数1の三角比 2 2023/02/28 20:31
- 数学 「θ=0°以上180°以下のとき、tanθ=(ルート3)-2であるときのcosθ、sinθを求めよ」 2 2022/07/24 20:19
このQ&Aを見た人はこんなQ&Aも見ています
-
【お題】大変な警告
【大喜利】「今このパソコンは大変危険な状態です」という警告メッセージを無視してパソコンを開いたら、こんなことが起こった
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
あなたの「プチ贅沢」はなんですか?
お仕事や勉強などを頑張った自分へのご褒美としてやっている「プチ贅沢」があったら教えてください。
-
テレビやラジオに出たことがある人、いますか?
テレビやラジオに取材されたり、ゲスト出演したことある方いますか?
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
答えがマイナスになる理由が分からないです
数学
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一番好きなみそ汁の具材は?
- ・泣きながら食べたご飯の思い出
- ・「これはヤバかったな」という遅刻エピソード
- ・初めて自分の家と他人の家が違う、と意識した時
- ・いちばん失敗した人決定戦
- ・思い出すきっかけは 音楽?におい?景色?
- ・あなたなりのストレス発散方法を教えてください!
- ・もし10億円当たったら何に使いますか?
- ・何回やってもうまくいかないことは?
- ・今年はじめたいことは?
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
cos(2/5)πの値は?
-
cos2x=cosx ってなにを聞かれ...
-
1+cosθをみると何か変形ができ...
-
e^2xのマクローリン展開を求め...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
eの2πi乗は1になってしまうんで...
-
1/ a + bcosx (a,b>0)の 不定積...
-
Σは二乗されないのですか?
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
cosθやsinθを何乗もしたものを...
-
(1)θ=36°のとき、cos2θ=−cos3θ...
-
加法定理の問題
-
加法定理の問題
-
θが0度以上180度以下のとき cos...
-
1/1+tan^2θ=cos^2θになる理由を...
-
複素関数で分からない問題があ...
-
長方形窓の立体角投射率
-
数3です。 第n項が次の式で表さ...
-
複素数の実部と虚部
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
e^2xのマクローリン展開を求め...
-
cos(2/5)πの値は?
-
cos2x=cosx ってなにを聞かれ...
-
∮sinθcos^2θを置換積分なしで =...
-
cos60°が、なぜ2分の1になるの...
-
cosθやsinθを何乗もしたものを...
-
積分
-
三角関数
-
数学の質問です。 0≦θ<2πのとき...
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
1/ a + bcosx (a,b>0)の 不定積...
-
二等辺三角形においての余弦定...
-
長方形窓の立体角投射率
-
cos40°の値を求めています。
-
加法定理
-
△ABCにおいてAB=4、BC=6、CA=5...
-
心臓形の重心
-
不定積分∫dx/√(1-x^2)=arcsin(x...
おすすめ情報