
フーリエ級数の説明で、最初フーリエ級数をf(x)で表して、xに対してf(x)を周期2πの周期関数とすることでフーリエ係数を求め、その後、「…つまり、f(x)はsin nx、cos nxという異なる周期を有する関数の線型結合で、係数がそれらの加重を示す指標になっている。」と言うような説明を読んだのですが、この加重とは何の事でしょうか?それについては詳しくは述べられていないので分からなかったんです。倍数が大きくなる程波の振幅が大きくなるみたいなことですかね?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数を求めよという問題の解 1 2023/02/06 18:20
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数について、 an=4/ 1 2023/02/10 14:18
- 数学 f(x)=1 (0<x<L) f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求 1 2022/12/01 17:05
- 数学 f(x)=x+1 (-π<x≦π)のフーリエ級数の複素フーリエ級数を求めよという問題が分からないので 1 2022/12/13 17:30
- 数学 f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求めよという問題が分からないので 3 2022/12/03 14:39
- 数学 フーリエ変換の相似性(時間軸の伸縮)の公式について 3 2024/05/18 14:47
- 数学 f(x)のフーリエ変換をF(ξ) g(x)のフーリエ変換をG(ξ)とする時、 ①f(ax+b)のフー 1 2023/02/06 18:25
- 数学 フーリエ級数係数 2 2023/06/04 14:29
- 数学 f(x) を周期 T >0 の周期関数とするとき ∫(0~x)f(t)dt が周期 T >0の周期関 2 2022/12/13 18:21
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
このQ&Aを見た人はこんなQ&Aも見ています
-
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
数学
-
図の問題の|z|=1の写像を計算したんですが w=(z-i)/(z+1) z=-i(w+1)/(w-
数学
-
フーリへ級数転移解
数学
-
-
4
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
-
5
内積なくても
数学
-
6
2の810乗はいくつですか?
数学
-
7
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
8
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
9
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
数学
-
10
高校数学です。 無限級数で、無限級数が収束するとき第n項は0に収束しますがこの逆は言えませんよね。
数学
-
11
関数を定積分した値に絶対値とる か 関数の絶対値をとってから定積分する場合 値が異なるとこはあります
数学
-
12
添付している画像の積分が解けません
数学
-
13
簡単なはずですが教えてください。
数学
-
14
ノンアルコール飲料
数学
-
15
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
数学
-
16
算数や数学の問題って、問題自体が間違えていることもあるので、出題者の意図を汲み取ってどのような解答を
数学
-
17
毎日毎日暑すぎて平方完成する気も起きません。 ギリギリの体力で実数x,yについて 2(x²+1)(y
数学
-
18
ちょっとむずかしいね?
数学
-
19
こうなる理由が分かりません
数学
-
20
is there any reason why
数学
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
モンティホール問題について 問...
-
二重和
-
上の(−b−2)の何をどう考えた...
-
確率の質問です
-
全体100人のうちリンゴ派90人み...
-
これって①番の公式を使うのでし...
-
複素数に拡張したタンジェント...
-
純実(purely real)とはどんな状...
-
グラフの作成に便利な、
-
ヒット&ブローゲーム(数あて...
-
2.2%は分数で表すと22/1000、約...
-
フラッシュ暗算ってそろばん経...
-
mx-y-m-1=0,x+my-2m-3=0の交点P...
-
独立かどうかの判断のしかた
-
画像の問題の(2)で質問です。 ①...
-
4500と3000を1:9と3:7とか比...
-
媒介変数 x = t + 1/t-1 , y = ...
-
足し算のざっくり計算が苦手で...
-
九星気学では、人の生まれた年...
-
この増減表を求める問題で微分...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(z)=(z^2-1)のテイラー展開と...
-
中高で数学をやる意義は? と聞...
-
二重和
-
誤差の大きさ
-
確率の質問です
-
123を使って出来る最大の数は?
-
【数学の問題】男女4vs4の合コ...
-
媒介変数 x = t + 1/t-1 , y = ...
-
2025.2.17 02:11にした質問の延...
-
演算子法についての式変形について
-
三つの複素数の位置関係
-
クレメールの公式について教え...
-
2.2%は分数で表すと22/1000、約...
-
皆既日食について
-
高1数学二次関数の問題です!
-
一番なんですけど、 等比数列だ...
-
数学と言うか数字の面白さ
-
絶対値の中が0以上ならそのまま...
-
これなに
-
数学
おすすめ情報