ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

薄層クロマトグラフィーの呈色に
ヨウ素蒸気をよく使いますが、
これはどのような原理で色がつくのでしょうか?
特定の官能基と反応する他の呈色試薬と違い、
Wikipediaによると
「ほぼ全ての官能基の呈色に有効」だそうですが、
有機化合物全般にヨウ素分子が直接結合する…
わけではないですよね?
教えて下さい。宜しくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (7件)

#6の回答について



>Most organic compounds will absorb iodine or react with it.

ほとんどの有機化合物はヨウ素を吸収するとはどのような意味なのでしょうか?
absorb(吸収)ではなくadsorb(吸着)の誤りということはありませんか。

質問者が勘違いされるといけないので補足説明しますが、ヨウ素が有機化合物と反応した場合(例えば二重結合や活性水素との反応)は、有機ヨウ素化合物となりますので当然ヨウ素の色は無くなってしまいますので、そのことによって発色はしません。
ヨウ素によって酸化された場合も、ヨウ化物イオンとなりヨウ素の色はなくなります。
また、アミン類とは、一定以上の温度では強いコンプレックスを作成する可能性がありますが、実際は相互作用(結合ではない)で有機化合物の周りにヨウ素が補足されているような状態だと思います。
いずれにしろ、ヨウ素発色は有機化合物とヨウ素の相互作用によるもので、反応や結合では説明できないと思います(もちろん還元性物質との反応や活性な多重結合への付加反応は起こりますが)。
    • good
    • 6

No.1です。


「結合を作る」というのはファンデルワールス結合の意味も含めて、「酸化」と「錯体形成」は電荷移動錯体も含めて、あいまいな書き方をしました。

どこかの英語のWebページには
Most organic compounds will absorb iodine or react with it.
と書かれていましたので(このページに正しいことが書かれている保証はありませんが)、化合物の種類によっていろいろな可能性があるとしか言えないのでは?

No.5さんの質問にわかる限りの回答を書いておきます。
1)ヨウ素は電子受容体です。(フェノールはどちらかといえば電子供与体、ニトロベンゼンはどちらかといえば電子受容体なので、フェノールの方に強く結合するはずです。)
2)電荷移動錯体の安定性は種類によっていろいろです。可逆であるものも少なくないと思います。
3)おっしゃるとおり、電荷の状態によって色が変わります。モノによって赤っぽかったり、紫っぽかったりすることもあります。
    • good
    • 1

c80s3xxxさん。

補足説明ありがとうございます。

電荷移動型錯体を形成するという考え方でヨウ素発色を説明するといくつかのモデルではうまく説明できそうですが、いくつか疑問点があります。
もし、お分かりになるようでしたら説明していただけると幸いです。

1)ヨウ素は電荷移動型錯体の電子受容体として働いているという考え方でよいのでしょうか?(フェノールとニトロベンゼンはどちらが強く結合するのか)
2)キンヒドロンのような電荷移動錯体は、いったん形成されると通常は分解しないと思うのですが、ヨウ素蒸気の外に置くと、発色が褪色してなくなります(ほとんど結合していないイメージです)。
3)電荷移動型錯体が形成された場合は、電荷の状態によって色がすべて同じにならないと思うのですが、ほとんどの場合(ごくまれに黄緑色に発色することがありますがこれはヨウ素が実際に反応したと考えています)茶色にしか発色しません。

なお「吸着」という用語の定義は厳密に意識していませんでしたが、今回の説明ではプレート上の有機化合物が付着している部分にヨウ素が「吸着」するということで、「結合」や「反応」ではないということがいいたかったわけです。
    • good
    • 0

ヨウ素とπ電子や孤立電子対が一種の電荷移動錯体を作り,その電荷移動吸収帯による吸収だと思います.したがって,どんな物質でも発色するわけではないでしょう.


吸着というのは固体や液体の界面にある成分が濃縮される現象を指すので,巨大分子に小分子が吸着する場合を除いては,分子間の相互作用を表す言葉としては不適切なのでは?
    • good
    • 5

>ところでカルボン酸にヨウ素が吸着しないのはなぜでしょうか?



私の経験ですが、ヨウ素はカルボン酸のような酸性物質とは比較的相互作用が低い(分子同士が反発する)ような気がします。もちろん、分子の大きさなどにも関係しますのでカルボン酸すべてに通用すると一概に決め付けるわけには行きません。
一方、塩基性物質のアミン類はヨウ素と強いコンプレックスを作成するため、ヨウ素の入ったビンにプレートを入れるとすぐに着色します(これも化合物を見分けるヒントになりますので観察が重要です)。

>吸着のメカニズムについてもしご存知であれば教えて下さい

例えば、活性炭は、一般的に多くの有機化合物を吸着しますが、高分子(着色物質)などのほうが通常の有機化合物よりも吸着しやすい傾向があります。これが活性炭処理の原理ともいえます。しかし、比較的低分子でもフェノール類などは相当活性炭に吸着してしまいますので、活性炭処理をすると収量が大幅に減少することもあります。

一般に吸着は分子間の相互作用(ファンデルワールス力を含めて)によるものですから、大きな分子のヨウ素は多くの有機化合物に吸着するものと考えられます。

上記の吸着のメカニズムについてはあまり自信がありませんが、それ以外は経験に基づいた話ですので参考にして下さい。
    • good
    • 1

反応しているのではなく吸着です。


ヨウ素は多くの有機化合物を吸着しますが、カルボン酸など一部の有機化合物では逆に吸着しないため、周りの部分に吸着されるヨウ素があるため(おそらく残留溶媒への吸着)、白抜けのようになることもあります。
    • good
    • 2
この回答へのお礼

回答ありがとうございました。
なるほど、吸着ですか。
これまでは「呈色する」→「反応する」と
信じ込んでいました。
ところでカルボン酸にヨウ素が吸着しないのは
なぜでしょうか?
軌道や電子密度などに関係あるのでしょうか。
吸着のメカニズムについて
もしご存知であれば教えて下さい。

お礼日時:2005/05/02 23:55

ヨウ素となんらかの反応を示す有機物、あるいは、結合を作る有機物でなければ呈色しないと思います。


詳しいことはわかりませんが、酸化、付加(2重結合)、錯体形成などが考えられます。
    • good
    • 1
この回答へのお礼

回答ありがとうございました。
なるほど、酸化ですか。
錯体形成の場合、特定の軌道をもつ化合物同士の
軌道間相互作用が生じるわけで、
「官能基によらず」相互作用できるとは
考え難いです。

お礼日時:2005/05/02 23:50

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QTLCスポットのUV発色について

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに、長波だけ反応する物質、短波だけ反応する物質があり,なぜこのような結果になるのか不思議です。
自分なりに考えてみたところ、「短波で消光するのは、シリカゲルに蛍光物質がぬってあって、その上に展開した物質が覆うように存在するからであり、別に共役二重結合を持たなくてもプレート上に展開された物質はすべて確認できるのかな。長波で反応する場合は、共役二重結合によって紫外線を吸収した後、別の波長として放出し、蛍光物質として検出できるのかな。」と思いましたが、よくわかりません。
どなたか、ご存知の方、教えてはいただけないでしょうか。よろしくお願いいたします。

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに...続きを読む

Aベストアンサー

共役二重結合のような電子が励起されやすい状態にある化合物は強いエネルギーを持った短波長の紫外線によって励起され発光ではなく熱となって基底状態へともどります。つまり紫外線を吸収するので見た目はその部分だけ消光します。当然全ての物質が吸収するわけではなく、展開後に溶媒を減圧したりして完全に乾かさなくてもUVで検出されないことからも分かります。長波長の紫外線で光る物質は長波長の波長で励起されて可視光を放つものです、エネルギーが弱いためにどんな物質でもというわけではありません。光る物質の多くは長い共役系を持っているなど弱いエネルギーでも励起できそうな物ばかりですよね。
ちなみにシリカゲルのUV-Visスペクトルを測定すると260nm以下あたりから吸収域を持っていることが分かります。

QTLCへの硫酸噴霧

薬学で実験をやっているのですが。
TLCに植物の成分をスポットして展開し、その後10%硫酸を噴霧してからホットプレートで加熱してます。
このときに色が浮き出てくるのですが、これはなぜなんでしょう?
(成分はフラボノイドとジテルペンです)

私は硫酸によって成分同士が脱水縮合したため、発色しているんだと思うのですが、色々調べてみてもよく分からなくて…
どなたか教えてください!

Aベストアンサー

こんにちは

それは熱硫酸で有機物が酸化されて焦げるからです。
色が出るとまではいきませんが、モノによって多少焦げ具合が違うのでしょうか、
少しづつ茶色ぐあいが違うのが面白いと思います。

Q薄層クロマトグラフの展開溶媒について

薄層クロマトグラフで使用する展開溶媒に使用する一般的な溶媒は何なのか?溶媒の組合せはどうするのか?
また、展開を早くしたい場合など比率をどのように変えればいいのか教えて下さい。

Aベストアンサー

対象物質がわからない限り、一般的、と言われても困るんですが。

単純脂質であれば、ヘキサン - ジエチルエーテル (- 酢酸)、

リン脂質であれば クロロフォルム - メタノール - 水 (あるいは、アンモニウム水)

糖脂質であれば、基本は クロロフォルム - メタノール - 水 ですが、塩を入れたり、で。

一般に展開を早くすると分離が悪くなり、Spot も広がります。適切な展開条件は、物質によって変わってきて、必ずしも早くする必要が理解できないんですが。

QTLCの検出メカニズム

TLC(簿層クロマトグラフィー)において様々な検出試薬がありますが、リンモリブデン酸を用いるとどのような有機物が検出されるのでしょうか?
ほとんど全ての有機物が検出可能との記述を目にしましたが、ニンヒドリンで検出された物が、リンモリブデンでは検出することが出来ませんでした。この違いを教えてください。お願いします。

Aベストアンサー

私自身は「UV照射での蛍光」と「ヨウ素発色」ぐらいしかやった憶えがないのですが・・・(汗)

恐らくですが、両者を使ったときに生じる発色物質の吸光度(色の濃さ)の違いではないでしょうか。


つまり、
 リンモリブデン酸→モリブデンブルー(無機錯体)による発色;
   金属原子によるd-d遷移(=禁制遷移)のため、遷移が起こりにくい=色が薄い
 ニンヒドリン→ヘールマン紫(有機染料)による発色;
   共役系によるπ-π*遷移(許容遷移)のため、遷移が起こりやすい=色が濃い
という差によって、試料の濃度が低い場合には、より効率よく発色する後者の方が鋭敏に呈色する
ものと思います。
(実際に染料の粉や食紅などに触れたことがあるとわかりやすいのですが、それらの色の濃さは
 無機塩類(錯体)のそれとは本当に全然違います;
 ちなみに確か食紅はデキストリンなどで希釈してあったはず)


モリブデンブルーについての参考;
http://www.shse.u-hyogo.ac.jp/kumagai/eac/4_9.htm
ニンヒドリンについての参考;
http://ja.wikipedia.org/wiki/%E3%83%8B%E3%83%B3%E3%83%92%E3%83%89%E3%83%AA%E3%83%B3%E5%8F%8D%E5%BF%9C
π-π*遷移についての参考;
http://ja.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90%E6%A7%8B%E9%80%A0#.E9.9B.BB.E5.AD.90.E9.81.B7.E7.A7.BB.E3.81.AE.E7.A8.AE.E9.A1.9E
d-d遷移についての参考;
http://ja.wikipedia.org/wiki/%E9%9B%BB%E8%8D%B7%E7%A7%BB%E5%8B%95%E9%81%B7%E7%A7%BB

私自身は「UV照射での蛍光」と「ヨウ素発色」ぐらいしかやった憶えがないのですが・・・(汗)

恐らくですが、両者を使ったときに生じる発色物質の吸光度(色の濃さ)の違いではないでしょうか。


つまり、
 リンモリブデン酸→モリブデンブルー(無機錯体)による発色;
   金属原子によるd-d遷移(=禁制遷移)のため、遷移が起こりにくい=色が薄い
 ニンヒドリン→ヘールマン紫(有機染料)による発色;
   共役系によるπ-π*遷移(許容遷移)のため、遷移が起こりやすい=色が濃い
という差によって、試...続きを読む

Qリンモリブデン酸溶液

TLCの呈色でリンモリブデン酸溶液を使いました。
酸化還元により呈色する、ということまではわかりましたが具体的な呈色機構(反応機構)、どういったものと反応するのか(そのときの色は何か←青緑色と赤色に呈色したものがあったので)ということが調べてみてもわかりませんでした。
上記のことがわかる方は教えていただけないでしょうか。もしくはそういったことが書いてあるサイト・本などを教えていただけないでしょうか。よろしくお願いします。

Aベストアンサー

まずリンモリブデン酸の構造をご覧下さい。日本新金属株式会社様のサイトから:
http://www.jnm.co.jp/pw12.htm
右下の正8面体が12個集まった構造がいわゆるヘテロポリ酸の基本骨格です。12個のモリブデンが正8面体の中央に酸素が頂点にあり、リン原子はこの立体のど真ん中に嵌り込んでいます。
非常に「対称性」が高く、分子軌道が「縮重」しているため、還元されると電子が分子全体に分布してしまうため、特別な酸化剤として用いられます。
さて、埼玉大学のTLCの検出法のページ:
http://md.fms.saitama-u.ac.jp/study/tlc.html
焦げちゃうみたい。
兵庫大学のリン酸分析のページ:
http://www.shse.u-hyogo.ac.jp/kumagai/eac/4_9.htm
リンモリブデン酸は還元されるとモリブデンブルーというきれいな発色をします。これが初めに述べた電子が入った状態の色です。
私、個人的にはTLCで発色させる事はないんです。ほとんどの場合、掻き取ってまた分析するのが目的で、小さなTLCは条件選びのためなもんですから。幸い私の扱う物質はほとんどUV吸収があるので蛍光検出しちゃいます。
生物関係だとそうはいかないので大変ですね。

まずリンモリブデン酸の構造をご覧下さい。日本新金属株式会社様のサイトから:
http://www.jnm.co.jp/pw12.htm
右下の正8面体が12個集まった構造がいわゆるヘテロポリ酸の基本骨格です。12個のモリブデンが正8面体の中央に酸素が頂点にあり、リン原子はこの立体のど真ん中に嵌り込んでいます。
非常に「対称性」が高く、分子軌道が「縮重」しているため、還元されると電子が分子全体に分布してしまうため、特別な酸化剤として用いられます。
さて、埼玉大学のTLCの検出法のページ:
http://md.fms.sa...続きを読む

Q無水硫酸ナトリウムによる脱水

 有機溶媒に無水硫酸ナトリウムを加え脱水すえう方法について質問があります。
 500mlの溶媒に対して無水硫酸ナトリウムを加えた後、何時間ぐらいで脱水は終わるのでしょうか?
 また、どうやって脱水が終わったことを確認するのでしょうか?
 どなたか分かる方よろしくお願いしますm(_ _)m

Aベストアンサー

硫酸ナトリウムは、脱水容量が大きいけれど、脱水速度が遅いとされています。

これまでの経験では、乾燥は一昼夜とか、昼休み中、あるいは乾燥中、器具の洗い物をするとかで、時間は掛けてました。少なくとも(加える量にもよりますが)、30分から1時間は掛けたら安心ですね。

ついでに他の乾燥剤の特徴も書いておきます。

CaCl2:アルコール、ケトン、アミン、フェノールは不可
MgSO4:やや酸性 (MgSO4・7H2O)
CaSO4:脱水速度速い、容量小さい (CaSO4・1/2H2O)
Na2SO4:脱水速度遅い、容量大きい (Na2SO4・10H2O)

終点は確認しませんね!

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Qブロモクレゾールグリーンによる呈色

どなたかブロモクレゾールグリーンによるカルボン酸の呈色反応について
詳しい作用機序を教えてもらえないでしょうか。手元の資料にも載っていないし
ネットで調べても解りませんでした。ちょっと急いでいます。
よろしくお願いします。

Aベストアンサー

みたび rei00 です。

 メルクジャパンの「薄層クロマトグラフィー用呈色試薬」と言う冊子がありましたので調べてみました。

 これによると,「ブロモクレゾールグリーン試薬」は, ブロモクレゾールグリーンのエタノール溶液に 0.1 M の NaOH を青色を呈するまで加えて作製するようです。

 ですので,カルボン酸が存在しない部分では青色を呈し,カルボン酸のスポット部分ではアルカリが中和されて黄色を呈するはずです。

 参考文献として,「F. Bryant, B. T. Overell, Biochem. et biophys. Acta, 10, 471 (1953)」が挙がっています。

Q2,4-ジニトロフェニルヒドラゾンについて

アセトンと2,4-ジニトロフェニルヒドラジン試液との反応で、
2,4-ジニトルフェニルヒドラゾンが出来ると聞きました。
しかし、化学反応式がわかりません。
どなたかわかる方いらっしゃいましたら、教えて下さい!
よろしくお願いします。

Aベストアンサー

はい、図を貼ります、なお2,4-ジニトロフェニル基は書くのが面倒なのでArと書きます。芳香族の基を略すときは良く使うので覚えていても良いでしょう。

QTLC

安息香酸の同定にTLCを用いて、展開層にn-ヘキサンと酢酸エチル1:1の比率にし、オプションとして酢酸一滴加えたのですが、何故酢酸のようにカルボン酸をもっている物を入れると、 TLCスポットのテーリングを防ぐことが出来るのですか?原理を教えてください

Aベストアンサー

使用したTLCの種類が記されていませんが、特殊な演習では無いようなので、以下シリカゲルだと仮定して話をすすめます。
またこの方法は「古典的」な順相クロマトグラフです。
何が「順」なのかというと固定相が移動相より極性が高く極性の低い物質のRf値が大きくなる事を言います。
「逆相」の場合固定相に極性がほとんど無く移動相にメタノール水溶液、アセトニトリル水溶液などを使用します。
移動相としてn-ヘキサンと酢酸エチルの1:1混合物を使用するのは「教科書的」な方法です。
古典的な生体物質の分析法などでは、この二溶媒のみ比率を変えて使用します。

本題ですが、安息香酸は水素結合を形成し易い物質なので、シリカゲルと水素結合でテーリングを起こす可能性が高いのです。
テーリングを説明しておくと、サンプルがクロマトグラム上で主たるピークより後ろ側に、ずるずると終点の明確で無い尾を牽く現象で、不運な場合にはピークと試料をスポットした位置がつながってしまいます。
酢酸を加えるのは、固定相より試料と水素結合を作り易い物質を移動相に加え、試料(この場合は安息香酸ですが、展開される物質)と固定相との水素結合を阻害してやるのです。

使用したTLCの種類が記されていませんが、特殊な演習では無いようなので、以下シリカゲルだと仮定して話をすすめます。
またこの方法は「古典的」な順相クロマトグラフです。
何が「順」なのかというと固定相が移動相より極性が高く極性の低い物質のRf値が大きくなる事を言います。
「逆相」の場合固定相に極性がほとんど無く移動相にメタノール水溶液、アセトニトリル水溶液などを使用します。
移動相としてn-ヘキサンと酢酸エチルの1:1混合物を使用するのは「教科書的」な方法です。
古典的な生体物質...続きを読む


人気Q&Aランキング