ママのスキンケアのお悩みにおすすめアイテム

オペアンプでボルテージフォロアを組む場合、教科書ではVoutと-入力を短絡すればいいと書いてあるのですが、あるアンプの回路をみたら短絡ではなく10kオームになっていました。
先輩に聞いたら発振防止のために入れるらしいですが、なぜ10kオームなのかという理由はわかりませんでした。
抵抗を入れるのはどういう場合なのでしょうか。
抵抗を入れる場合は定数をどうやって決めるのでしょうか。
教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

短絡でなく10kオームとなっているのは、+入力から見た信号源インピーダンスと-入力から見た信号源インピーダンスの差を小さくし、出力のDCオフセットとDCドリフトを小さくするためでしょう(バイアス電流の影響)。



ただし、ここに10kオームを入れると、高い周波数でのフィードバック位相が-入力の容量の影響で遅れますので、発振しやすくなります。
この場合、10kオームとパラレルにコンデンサを入れることもあります(位相補償)。
    • good
    • 1
この回答へのお礼

なるほどと思いました。でも難しいですね。

お礼日時:2008/05/23 22:11

ANo.3です。


バイアス電流とオフセットについて説明されているページがありましたので、ご紹介しておきます。
http://www.miyazaki-gijutsu.com/series4/densi061 …

6.1.(4-B-c)
をお読みください。
    • good
    • 1
この回答へのお礼

そうなんですか。
オペアンプって思っていた以上に難しいです。

お礼日時:2008/05/23 22:08

ご質問の場合に抵抗を入れる場合というのは、オペアンプ入力の寄生容量などに対する対策が一番考えられます。


必要ない場合もありますし、入れた方がよい場合もあります。
入れる必要があるのか、また入れるとしてどの程度をいれればよいのかは、オペアンプの仕様により異なるので、一概に簡単にいえる話ではありません。
通常は位相のマージンをみて決めています。
    • good
    • 0
この回答へのお礼

教科書を離れた応用の領域なのですね。
デジタル3年アナログ10年といいますが、まじで10年かかりそうな気がしてきました。

お礼日時:2008/05/23 22:06

オペアンプの非反転増幅回路の増幅率の式は、A=1+Rf/Ri です。


この回路でRiをはずすと、あなたのいう回路になり、このときの増幅率は、A=1+Rf/∞=1 となります。
Rfの値は幾らでもいいので10kの根拠など無いはずです。また発振防止という点では0の方がいいような気がします。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qボルテージフォロワが発振しないようにするにはどうしたら良いですか?

帯域の大きなオペアンプを使ってボルテージフォロワ回路を組んだ場合で、
被測定対象の容量が大きな場合など
どうしても発振してしまう場合どうすれば良いのでしょうか?
ボルテージフォロワの帯域を下げるにはどうしたら良いのか教えて頂けますでしょうか?
http://focus.tij.co.jp/jp/lit/an/jaja130/jaja130.pdf
このページに一応解説がなされているのですが、出来る限り入力インピーダンスを下げずに発振を抑えたいので、
6ページにある3.3の方法がもっとも有効だということになるのでしょうか?
ボルテージフォロワの発振を抑えるというか単にローパスフィルタで見えなくしているだけのように思うのですが、
これで最良の方法なのでしょうか?

Aベストアンサー

最もよく使われている方法は、ボルテージフォロワと容量負荷の
間を小さい抵抗(10Ωとか)で分離するやりかたです。この場合
入れた抵抗R1のせいで出力電圧が減衰するので、この抵抗の後から
負帰還をかけます。(R2経由)

もしC1やR2がないと、抵抗R1と負荷C2によるLPFで位相が遅れ、
さらに発振しやすくなってしまうので、添付の図のように高い
周波数はOPアンプから直に帰還されるようにします。(C1経路)

これで安定にはなりますが、全体としての高周波特性が悪化
します。出力に抵抗を直列に入れた時点で、OPは容量負荷を
ドライブすることを放棄したようなもので、さらに高い周波数は
負荷を無視して帰還しているのですから。

どうしても容量負荷自体に対して、高い周波数までフォロワとして
働いて欲しい場合は、これはドライブ能力を増すしかありません。
負荷容量で位相が遅れるのが発振の原因ですから、位相が遅れない
ようにアンプの出力抵抗を下げるしかない訳です。

なお、CR直列回路を負荷に入れる(6ページ3.3の方法)は必ず
発振が止まるという方法ではありません。高周波で負荷が純粋な
容量に見えるよりは、抵抗成分も並列になっていて位相の遅れが
制限されることで安定になる、という狙いですので、容量負荷が
重いときはあまり効きません。

ただ、LPFで発振を見えなくしているといったインチキでは
ありません。ちゃんと帰還ループ一巡での位相を考えた方法です。

最もよく使われている方法は、ボルテージフォロワと容量負荷の
間を小さい抵抗(10Ωとか)で分離するやりかたです。この場合
入れた抵抗R1のせいで出力電圧が減衰するので、この抵抗の後から
負帰還をかけます。(R2経由)

もしC1やR2がないと、抵抗R1と負荷C2によるLPFで位相が遅れ、
さらに発振しやすくなってしまうので、添付の図のように高い
周波数はOPアンプから直に帰還されるようにします。(C1経路)

これで安定にはなりますが、全体としての高周波特性が悪化
します。出力に抵抗を直列に入れた...続きを読む

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む

Qオペアンプに使用するパスコンは何故0.1μFなのでしょう?

いろいろ本を見てもパスコンは0.1μFをつければいい。という内容が多く、
何故パスコンの容量が0.1μFがいいかというのがわかりません。
計算式とかがあるのでしょうか?

Aベストアンサー

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけです。
(従って、当然のことですが、10MHz~1GHzを扱うデバイスでは0.1μFでは不十分で、0.01μF~10pFといったキャパシタを並列に入れる必要が出てきます)

では低域の問題はどうでしょうか?
0.1μFは1MHzで2Ω、100kHzでは20Ωとなり、そろそろお役御免です。
この辺りからは、電源側に入れた、より大容量のキャパシタが守備を受け持つことになります。
(この「連携を考えることが、パスコン設計の重要なポイント」です)

ここで考えなければならないのが、この大容量キャパシタと0.1μFセラコンとの距離です。
10MHzは波長30mです。
したがって、(これも大ざっぱな言い方ですが)この1/4λの1/10、すなわち75cmくらいまでは、回路インピーダンスを問題にしなくてよいと考えます。

「1/40」はひとつの目安で、人によって違うと思いますが、経験上、大体これくらいを見ておけば、あまり問題になることはありません。
厳密には、実際に回路を動作させ、て異常が出ればパスコン容量を変えてみる、といった
手法をとります。

上記URLは、横軸目盛りがはっきりしていないので、お詫びにいくつかのパスコンに関するURLを貼っておきます。
ご参考にしてください。
http://www.rohm.co.jp/en/capacitor/what7-j.html
http://www.cqpub.co.jp/toragi/TRBN/contents/2004/tr0409/0409swpw.pdf
http://www.murata.co.jp/articles/ta0463.html

参考URL:http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけ...続きを読む

Qオペアンプに電源を入れただけでノイズがたくさん出るのですが・・・

オペアンプを使って電流電圧変換器を作りました。
帰還抵抗値は10kΩ、パスコン容量は10pF、帰還容量は1pFです。
これをスペクトラムアナライザで見てみると入力段に何も信号を入れなくても、大量のフロアノイズ及び周期的なノイズピーク(凡そ100kHzおき)に出ています。
この原因は何なのでしょうか?
こんな簡単にオペアンプが発振するとは思えないのですが・・・
いろいろ考えてみたのですが、分かりませんでした。
どなたか知ってらっしゃいましたら教えて下さい。

Aベストアンサー

OPA2604のデータシート1ページ目の FEATURES を見ると、ゲイン1で安定( UNITY-GAIN STABLE)と書かれていますので、帰還率が1でも発振しないと思います。念のため、オープンループゲイン/位相の周波数特性(4ページ)を見てみましたが、Voltage Gain = 1 ( 0dB )のときの位相余裕が40度あるので、反転入力(-)と出力間に帰還抵抗を入れた状態で、反転入力をopenにしても発振しないと思います。

OPA2604の実物が手元にないので、回路シミュレータ(Circuit Maker)で様子を見てみました。オペアンプを OPA2604 とし、帰還容量を Cf = 1pF、帰還抵抗を Rf = 10kΩ~500kΩ、非反転入力(+)=0V として出力波形を見てみましたが異常はありませんでした。他に考えられる発振の原因として以下の3つがあります。
   (1) 容量性負荷による発振
   (2) パスコンが10pFと小さいことによる発振
   (3) 反転入力端子の容量による発振
(1)については、データシート9ページの FIGURE 2 に、大きな容量性負荷の駆動回路の例が出ているので、出力端子に10000pFの容量をつけてシミュレーションしてみましたが発振しませんでした(出力電圧は完全なDCではありませんがnV未満のAC信号しか出ません)。(2)については、電源ラインに配線インダクタンスを模した 0~500μH のコイルを入れてみましたがこれでも発振はしませんでした。(3)についてですが、反転入力端子(-)と負荷に付けた静電容量がともに数千pFの場合に、Rf = 10kΩ で発振し、Rf = 500kΩでは発振しないとういう現象が見られました。可能性としては低いと思いますが、反転入力端子(-)と出力端子の両方に大きな容量(数十mの同軸ケーブルなど)がつながっていませんか?

>クローズループでのゼロクロスポイントの計算はどうすれば良いのでしょうか?
ちょっと時間をください。

OPA2604のデータシート1ページ目の FEATURES を見ると、ゲイン1で安定( UNITY-GAIN STABLE)と書かれていますので、帰還率が1でも発振しないと思います。念のため、オープンループゲイン/位相の周波数特性(4ページ)を見てみましたが、Voltage Gain = 1 ( 0dB )のときの位相余裕が40度あるので、反転入力(-)と出力間に帰還抵抗を入れた状態で、反転入力をopenにしても発振しないと思います。

OPA2604の実物が手元にないので、回路シミュレータ(Circuit Maker)で様子を見てみました。オペアンプを OPA...続きを読む

Qボルテージフォロワに関する質問

たまに回路図でボルテージフォロワのプラス端子とグラウンドの間に
1MΩあるいは10kΩほどの抵抗器が挟んであるものを見かけるのですが、
これはどういう意味があるのでしょうか?
オペアンプ回路の本などでも解説されているのを見たことがありません。
私の予想では、高い電圧がフォロワの入力端子にかかったときに
電流がグラウンドに流れるようにするためではないかと思うのですが、どうでしょうか?
また、この抵抗器の抵抗値の決め方などについて教えて下さい。
よろしくお願い致します。

Aベストアンサー

図1のように信号ラインと+入力端子の間に抵抗 R2 が入っている場合は過電圧に対する保護用です。信号ラインとGND間に抵抗 R1 が入っているのは、入力に何もつがっていないときに、+端子の電圧が0Vになるようにするため(入力開放時に出力がフラフラ変動したり飽和しないようにするため)のものです。入力に直流カット用のコンデンサが入っている場合は、直流的には入力が開放されたのと同じになるので R1 を入れなければなりません。

            │\
 入力 ─┬─ R2 ┤+ \
      │    │    >─┬─ 出力
      R1 ┌─┤-  /   |
      │ │  │ /    |
      │ └──────┘
 GND ─┴────────── GND

R2 の値は
   R2 > 想定される最大入力電圧(V)/入力端子の許容電流(A)
を目安にします。汎用オペアンプのLM358 [1] の場合、入力端子の許容電流は 50mA なので、想定される最大入力電圧を 140V(AC100Vの尖頭電圧)とした場合、R2 > 3kΩとします。

[1] LM358データシート(2ページの絶対最大定格の「入力電流」) http://akizukidenshi.com/download/LM358N_NS.pdf

R1 の値は、オペアンプの入力バイアス電流によって+入力端子電圧のDC電圧(無信号時)が大きくならないような値にします。
  R1 < +入力端子の許容電圧(V)/入力バイアス電流(A)
微小な信号を扱っていて、+入力端子の無信号時DC電圧を 10mV 以内とした場合、 LM358の入力バイアス電流は最大 200nA なので(データシート3ページのInput Bias CurrentのMax)、R1 < 50kΩ とします。R1が小さいと入力インピーダンス(R1)が下がってしまいますが、R1を大きくするには、入力バイアス電流の小さなオペアンプを使います。例えばFET入力型のオペアンプは、入力バイアス電流は最大 200pA 程度なので、R1 = 10MΩと大きくした場合でも、+入力端子電圧の変動は最大2mVに収まります。

オペアンプの中には、上図のような非反転バッファ回路として動作させる場合に、-入力端子と出力端子間に1kΩ程度の抵抗を入れる必要があるものがあります(電源投入直後に-入力端子に過大電流が流れないようにするため)。そのようなオペアンプではデータシートには注意点として書かれています。

図1のように信号ラインと+入力端子の間に抵抗 R2 が入っている場合は過電圧に対する保護用です。信号ラインとGND間に抵抗 R1 が入っているのは、入力に何もつがっていないときに、+端子の電圧が0Vになるようにするため(入力開放時に出力がフラフラ変動したり飽和しないようにするため)のものです。入力に直流カット用のコンデンサが入っている場合は、直流的には入力が開放されたのと同じになるので R1 を入れなければなりません。

            │\
 入力 ─┬─ R2 ┤+ \
      │  ...続きを読む

Q閉ループゲイン 開ループゲイン

オペアンプの閉ループゲイン、開ループゲインとはそもそも何なのでしょうか?
根本的なとこがわかりません。
どなたかよろしくお願いします。

Aベストアンサー

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60dB)のフィドバックをかけたとすると、利得は20dB(40dB)になりますが、利得一定の周波数幅がうんと広くなることにお気づきでしょうか?
これが閉ループゲインです。

一般に、オペアンプの開ループゲインは100dB以上ありますが、これを開ループで使うことは滅多にありません。
周波数特性が問題にならないコンパレータのときくらいのものです。

参考URL:http://my1.interlink.or.jp/~md0858/series4/densi0613.html

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60...続きを読む

Qオペアンプ(ボルテージフォロワ)

オペアンプについて今学んでいるのですがボルテージフォロワ
ですこしわからないのですが、
最大の特徴がインピーダンス変換と書かれていたのですが
よくわかりません。
オペアンプは入力インピーダンスが非情に大きく、出力インピーダンスは小さいので、ボルテージフォロワは電圧を保ったまま、大きな出力インピーダンスを小さな出力インピーダンスに変換できるそうですが・・・
入力電圧=出力電圧と関係があるのでしょうか?
そもそもオペアンプの理想特性で入力インピーダンスが∞(非常に大きい)、出力インピーダンスが0(非常に小さい)の理由もわかりません。なぜそのような特性がいいのでしょうか?
インピーダンスのwikiを見てもよくわかりませんんでした;;

よろしくお願いします。

Aベストアンサー

こんにちは。
電源(正しくは電圧源、もしくは信号源)の内部インピーダンス(内部抵抗)の事を考えれば判りやすいかと思います。

普通の乾電池は1.5ボルトで、豆電球が繋がってもLEDが繋がってもラジオが繋がっても1.5ボルトですね。

しかし、どんな状況でも1.5ボルトを保てるわけではありません。
取り出す電流が大きくなると、出力電圧は下がってしまいます。
#逆に電流が少ない場合、新しい乾電池だと2ボルト近くあります。

この電流の変化に対する電圧変化(電圧降下)を、抵抗と同じように考えて、内部抵抗、もしくは内部インピーダンスといいます。

1Aの電流を余分に流した時、電池の電圧が1.5Vから1.3ボルトまで下がったとしたら、この電池の内部インピーダンスは、
(1.5V-1.3V)/1A=0.2オーム
となります。

あらゆる電圧源、信号源には、これと同じように抵抗部分を考える事が出来、これを内部インピーダンスといいます。

今、内部インピーダンスが10オームで現在の出力電圧が1ボルトの電源に、10オームの負荷を新たに繋いだらどうなるか考えてみましょう。
抵抗は、負荷が10オーム、内部インピーダンスが10オームで事実上、20オームになります。
すると、負荷を流れる電流は、
1ボルト/20オーム=0.05アンペア
となります。
理想的な電源では内部インピーダンスはゼロですので、本来なら、この負荷には、
1ボルト/10オーム=0.1アンペア
が流れないといけません。

つまり、内部インピーダンスが高いと、負荷に流せる電流が減るわけです。

次に、この回路での、負荷抵抗にかかる電圧は、
0.05アンペア×10オーム=0.5ボルト
となり、本来の電源電圧が内部インピーダンスと負荷抵抗で分割されてしまって、負荷にかかる電圧が下がってしまいます。

このように電圧源の内部インピーダンスが高い場合、測定器などに流す電流部分で誤差が発生してしまい正確な測定が出来なくなります。

取り出すのが直流電流じゃなくて、電気信号の場合は、信号源インピーダンスともいいます。

マイクロホンなどなら内部インピーダンスはキロオーム程度、心電図や脳波などならメガオーム以上です。

このように、特に測定分野では内部インピーダンスは高いと非常に困るので、インピーダンス変換をしないとまともな測定が出来なくなります。

また、増幅回路でも、前段の増幅回路の出力インピーダンスに対して次の段の回路の入力インピーダンスが低すぎると、同じ事が起こり、電圧増幅度が下がってしまいます。

こういう場合、インピーダンス変換を行います。
そして、インピーダンスだけ変換して、増幅率が1、つまり入力電圧=出力電圧、の関係になる物をボルテージフォロアといいます。

・・・あ~。何か大作を書いた気分。(笑)

こんにちは。
電源(正しくは電圧源、もしくは信号源)の内部インピーダンス(内部抵抗)の事を考えれば判りやすいかと思います。

普通の乾電池は1.5ボルトで、豆電球が繋がってもLEDが繋がってもラジオが繋がっても1.5ボルトですね。

しかし、どんな状況でも1.5ボルトを保てるわけではありません。
取り出す電流が大きくなると、出力電圧は下がってしまいます。
#逆に電流が少ない場合、新しい乾電池だと2ボルト近くあります。

この電流の変化に対する電圧変化(電圧降下)を、抵抗と...続きを読む

Qオペアンプ反転増幅回路で+入力に繋がれた抵抗は何?

独学でアナログ回路の勉強をしている素人です。

オペアンプの反転増幅回路の基本回路だと、+入力はGNDに落としていますよね。
しかしネットで検索すると、抵抗を介してGNDへ落とす回路を見かけました。
この抵抗の役割がわからず、困っています。

実際の回路の画像を添付しました。
添付画像の赤い矢印のところの抵抗のことですが、これはどのような役割をしているのでしょうか。
一段目のオペアンプのように抵抗を介さずGNDに落としてはいけないのでしょうか。

自分が購入したアナログ回路の設計入門書にも(入門だからか)載っていませんし、自分なりに調べましたが、この抵抗の役割だけどうしても分かりません。

どうかご教授お願い出来ませんでしょうか。
宜しくお願いします。

Aベストアンサー

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかっている項が誤差になります。R4 がない場合は、式(A)で R4 = 0 としたものになるので
Vout = -[ (R3/R1)*Vin1 + (R3/R2)*Vin2 + Ib*R3 ]
となって Ib*R3 が誤差になります。ところが、R4 を入れて、添付図の最後の式のようにR4の抵抗値を調整すると、Ibの項が 0 となって、オペアンプの入力端子に流れるバイアス電流による誤差をなくすことができます。

ご質問の回路では、R1 = 20kΩ、R2 = 20kΩ、R3 = 20kΩ なので、バイアス電流による誤差をなくすには、本来は R4 = 1/( 1/20e3 + 1/20e3 + 1/20e3 ) = 6.67e3 Ω= 6.67kΩ にすべきです。

オペアンプの入力端子に流れるバイアス電流による誤差は、バイアス電流 Ib が大きいほど大きくなるので、FET入力のオペアンプやCMOSオペアンプのように、Ib がpA未満と非常に小さい場合には、添付図の式(A)の Ib 自身が非常に小さいので、R4 を入れなくても(R4を短絡しても)誤差は小さくなります。R4 を入れて誤差を小さくしたほうがいいのは、一般的に、Ib が 100nA以上のオペアンプを使った場合になります。

LM358の場合は Ib が最大100nAと、無視できる境界線あたりですが、ご質問の回路は交流だけを加算するもの(出力コンデンサで直流がカットされている)なので、バイアス電流によってVoutに直流的な誤差電圧が少々乗っていても問題ありません(オペアンプにLM358を使うのならR4はなくてもいい)。

なお、添付図では、オペアンプの反転入力端子(-)に流れるバイアス電流も非反転入力端子(+)に流れるバイアス電流も同じ Ib としていますが、現実には、この電流にはわずかな違いがあります(その違いを入力オフセット電流といいます)。しかし、この違いは一般に小さいので無視できることが多いです。

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかってい...続きを読む

Q反転増幅回路の発振を防ぐ方法について

反転増幅回路の発振を防ぐ方法として、OPアンプ出力後(添付図参照)に抵抗を入れるとよいと聞いたのですが、なぜなのかわかりません。
詳しい方いらっしゃいましたら、ご回答よろしくお願いいたします。

Aベストアンサー

回答NO.2です。 回答の補足です。OPアンプの出力へRxとCsを負荷した場合のOPアンプの出力OUTの出力抵抗の前からOUT端子までの伝達関数はsをラプラス演算子として以下の式で与えられます。

V(out)/V(1)={Cs*Rx*s+1}/{Cs*(r0+Rx)*s+1}  (1)


式(1)で分子のゼロωzは

   ωz=1/(Cs*Rx)   (2)

で与えられ、分母のポールωpは

   ωp=1/{Cs*(r0+Rx)} (3)

で与えられます。周波数特性は式(1)でs=jωとおいて得られますが、形としては低い周波数ではゲインは0dB。ポール周波数ωpでゲインはωzが十分高ければー3dB。この場合はωpにωzが近いのでー1dB程度の低下・そして位相も少し遅れる。
 周波数がさらに上がってゆくとゼロの影響でゲインは再び上昇してゆきます。位相も戻ってゆきます。この周波数特性をシミュレーション計算した結果を添付しておきます。

 黄色がRx=1uΩ、即ちショートした状態で太い線がゲインを細い点線が位相wp示してます。薄青色がRx=100Ωの時の特性です。

 Rxに100Ωを入れただけで位相の遅れは約-7.5°に抑えられているのが分かると思います。Rxがショートされた状態だとCsの影響がもろに出て位相は大きく遅れてゆく(周波数の上昇に伴って)のが分かります。

 これがRxを挿入する効果ということになります。

回答NO.2です。 回答の補足です。OPアンプの出力へRxとCsを負荷した場合のOPアンプの出力OUTの出力抵抗の前からOUT端子までの伝達関数はsをラプラス演算子として以下の式で与えられます。

V(out)/V(1)={Cs*Rx*s+1}/{Cs*(r0+Rx)*s+1}  (1)


式(1)で分子のゼロωzは

   ωz=1/(Cs*Rx)   (2)

で与えられ、分母のポールωpは

   ωp=1/{Cs*(r0+Rx)} (3)

で与えられます。周波数特性は式(1)でs=jωとおいて得られますが、形としては低い周波数ではゲインは0dB。ポール周...続きを読む

Qボルテージフォロワとは?

ボルテージフォロワはどのような点で利用されるのでしょうか? インピーダンス変換と言われたのですがよくわかりませんので、どうか教えていただけないでしょうか?

Aベストアンサー

例えば、(連続的に出力電圧が調整できる)多段の抵抗分圧器などを考えるといいのではないでしょうか。

格段の間にボルテージフォロワを入れれば、出力は格段それぞれの分圧比の掛け算で決まり、出力電圧の調整・設定は容易です。ボルテージフォロワを用いないと、格段の並列抵抗を考えないと分圧比が決まらず、(初段の位置によって2段目の利き方が変わるなどの)面倒なことが起こります。

もう少し一般的に言うと、前段の出力抵抗が後段の特性に影響するような回路系では、ボルテージフォロワによって前後段を切り離すことが有効です。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング