https://imgur.com/a/T5plJ54
楕円については、方程式より焦点が(s, 0) と(-s, 0)
になるのは形からわかる。また内側にあるのも少し考えればわかる。
x = 0 を考えて焦点からの距離の和というのが2aというのがわかり
y = 0をかんがえて初等的に焦点の座標がもとまる
でも双曲線については、
焦点の座標を先に仮定するか
焦点のからの距離の差を先に仮定するかのどちらかをしないと
ここから問題のことを示すのは実はできません。
(焦点の座標との距離を計算して一定になるのをしめすのじゃだめなことに注意)
?
No.13
- 回答日時:
楕円について
(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかるのか
具体的に証明しない限り
わかったとはいえないのです
なぜ
いびつや原点から非対称な形にならない、
横長の楕円になるか
を
具体的に証明しない限り
証明したことにはならないのです
なるほど。いいたいことがわかりました。
方程式を見てすこし考えればわかるけど、定量的にはいうのは難しいか。
でも、たとえばx^2+y^2=1とみて
まるいくて、原点周りに対象であるといえないといってますか?
No.12
- 回答日時:
x^2/a^2+y^2/b^2=1
c^2=a^2-b^2
b^2=a^2-c^2
x^2b^2+y^2a^2=a^2b^2
x^2(a^2-c^2)+y^2a^2=a^2(a^2-c^2)
a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2
a^2x^2+a^2y^2+a^2c^2=a^4+c^2x^2
a^2(x^2+y^2+c^2)=(cx+a^2)^2-2cxa^2
a^2(x^2+y^2+c^2+2cx)a^2=(cx+a^2)^2
a^2{(x+c)^2+y^2}=(cx+a^2)^2
a√{(x+c)^2+y^2}=cx+a^2
4a√{(x+c)^2+y^2}=4cx+4a^2
0=4a^2-4a√{(x+c)^2+y^2}+4cx
(x+c)^2+y^2=(2a-√{(x+c)^2+y^2})^2+4cx
x^2-2cx+c^2+y^2=(2a-√{(x+c)^2+y^2})^2
√{(x-c)^2+y^2}=2a-√{(x+c)^2+y^2}
√{(x-c)^2+y^2}+√{(x+c)^2+y^2}=2a
だから
楕円
x^2/a^2+y^2/b^2=1
の焦点の座標が
(±√(a^2-b^2),0)
となるのです
焦点の座標を先に(s,0)と(-s,0)と仮定してはいけません
してません。
楕円については(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかります。
いびつや原点から非対称な形にならない、横長の楕円になるから。
ぎゃくに、何がわからないの??
https://imgur.com/a/a1djMI8
No.11
- 回答日時:
a > bだから=1になるためにxのほうがおおきくなきゃいけない
からといって
楕円の焦点が
長軸上にある
と
はわかりません
No.8
- 回答日時:
そこいらじゅうで解説されていますが、見る気ないみたいなので・・・
x^2/a^2 - y^2/b^2 = 1
で c^2 = a^2 + b^2(c > 0、当然 c > a) と置いておきます。
これでもちろん一般性が崩れることはありません。
これは
(c^2-a^2)x^2 - a^2・y^2=a^2(c^2-a^2)
→ c^2・x^2 + 2ca^2・x + a^4 = a^2・x^2 + 2ca^2・x + a^2・c^2 + a^2・y^2
→ (cx + a^2)^2 = a^2{(x+c)^2 + y^2}
と変形できます。
両辺の平方根を取ると
(cx + a^2) = ±a√((x+c)^2 + y^2)
→ (x-c)^2 + y^2 = (x+c)^2 + y^2 + 4a^2 ±4a√((x+c)^2 + y^2})
→ (x-c)^2 + y^2 = (√((x+c)^2 + y^2) ±2a)^2
双曲線の定義式にたどり着きました。多少技巧的ですが完全に演繹的です。
#c は焦点位置
たしかに、そうだか。
でも、その無機の説明は証明になってますか?
演繹的といっているけど、問題文に書いてあるからそう書いたのは数学として大人げないと思います
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
字面がカッコいい英単語
あなたが思う「字面がカッコいい英単語」を教えてください。
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
1+2+3+…=?
数学
-
数学の問題ですが、わかりません
数学
-
確率の問題 数学と実生活と
数学
-
-
4
微分係数の定義?
数学
-
5
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
6
なんでこんなことがわからない?
数学
-
7
tの値が解答と合いません。どこが間違ってるか指摘お願いします
数学
-
8
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
9
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
10
逆三角関数の方程式の問題です。解いたらこうなりましたが、本には、解なしと書かれていました。僕が作った
数学
-
11
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
12
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
13
1/3で場合分けは?
数学
-
14
難しいのでゆっくりよんでください。
数学
-
15
複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3
数学
-
16
iに絶対値がつくとどうなるのかを教えてください
数学
-
17
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
18
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
19
画像の説明で式中の*は掛け算、'は微分を表しているのでしょうか? あと他にもアンダーバー、_とかも出
数学
-
20
数学II 2つの整式f(x), g(x)の和と積をx-aでわったときの余りが、それぞれb,cであると
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【お題】絵本のタイトル
- ・【大喜利】世界最古のコンビニについて知ってる事を教えてください【投稿~10/10(木)】
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・ハマっている「お菓子」を教えて!
- ・最近、いつ泣きましたか?
- ・夏が終わったと感じる瞬間って、どんな時?
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
右下の小さい数字について
-
「原点に返る」と「原点に戻る...
-
重分積分の極座標変換について
-
座標(x,y)間(=2点)の...
-
極座標と直交座標の変換について
-
数IIの「図形と方程式」の質問...
-
複数の点(x,y)を通る曲線を,指...
-
生データーからのグラフから関...
-
奇跡の問題
-
楕円の円周上の座標を求める計...
-
距離、方位角から座標を求める方法
-
距離と方向角から座標を求める...
-
エクセルでグラフの作り方 軌...
-
円弧の始点、終点、回り角度か...
-
大学の複素数の問題なんですが...
-
任意の地点からの回転座標の求め方
-
なぜベクトルの外積の向きが右...
-
数学の解説をお願い致します‼︎
-
【中点の座標を求める公式】に...
-
高校1年の数学なのですが 因数...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
「原点に返る」と「原点に戻る...
-
右下の小さい数字について
-
距離と方向角から座標を求める...
-
重分積分の極座標変換について
-
三角関数 範囲が-πからπのとき...
-
複素数平面についてです ①xy平...
-
等角螺旋(らせん)の3次元的...
-
測量座標と算数座標の違い
-
距離、方位角から座標を求める方法
-
【数学】 解説の下から4行目が...
-
なぜベクトルの外積の向きが右...
-
高校1年の数学なのですが 因数...
-
複素数平面と座標平面の対応に...
-
楕円の円周上の座標を求める計...
-
複数の点(x,y)を通る曲線を,指...
-
極座標と直交座標の変換について
-
空間上の測定された点群から最...
-
「0でない2つのVのベクトルu,v...
-
エクセルを用いた3次元座標変換
おすすめ情報