人に聞けない痔の悩み、これでスッキリ >>

p-ニトロフェノールと、m-ニトロフェノールの酸性度のちがいについての根拠がわかる方いたら教えてください!!
pとoの差に関しては、oは分子内水素結合をするから、pよりも安定で水素が引き抜かれにくい。。。ということは教科書であったのですが、
mに関する記述は見つけられませんでした。

A 回答 (2件)

H^+ が解離したフェノキシドを考えます.


ヒドロキシ基の O 上に負電荷があるんですが, これは共鳴によってベンゼン環に移ることができます. このとき, 負電荷が移るのは (ヒドロキシ基からみて) 2位と 4位, つまり o- と p- の位置になります.
従って, o-ニトロフェノールと p-ニトロフェノールではニトロ基の O が負電荷を持つような共鳴構造を考えることができますが, m-ニトロフェノールではそのような構造を書くことができません. 従って, m- は o- や p- より酸性度が小さくなります.
    • good
    • 6
この回答へのお礼

回答ありがとうございます!
共鳴で説明できるんですね。
参考になりました!!

お礼日時:2007/08/16 23:44

共鳴構造を確認すれば分かると思います。


(習っていなかったらすいません)

o-及びp-ニトロフェノールではニトロ基が結合する炭素がマイナスになる共鳴構造をとるのでそこからニトロ基の酸素と共鳴した構造ができて、そのため酸性度は大きくなると思います。
m-ニトロフェノールはニトロ基を含んだ共鳴構造が書けないため酸性度は小さくなると思います。

ただ、質問者さん参考にした本についてですが
o-ニトロフェノールは分子内水素結合をするため水素が引き抜かれにくいとのことですが
水素結合しているのは間違いないと思いますが、p-ニトロフェノールは分子間水素結合をしていると思われるので直接の理由にはならない気がしますが・・・

o-ニトロフェノール :pka=7.23、 p-ニトロフェノール:pka=7.08
    • good
    • 2
この回答へのお礼

回答ありがとうございます!
共鳴は習っているので、お二方の回答で理解できました☆
ニトロの共鳴+フェノキシドイオンの共鳴の相乗効果なんですね。

あたしの教科書には、分子内水素結合の寄与のほうが分子間水素結合の寄与よりも大きいため、oのほうが安定しているので、酸性が弱くなると書かれていました。
(これは試験問題なのですが、oに関しては問題になっていませんでした。おそらく微妙なところだからなんでしょうか。。。)

お礼日時:2007/08/18 01:21

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qニトロフェノールのオルト体とパラ体

 ニトロフェノールのオルト体とパラ体では沸点が相当違いますよねぇ・・・。ニトロ基の場所の違いがどうして沸点の差に結びつくんでしょう?沸騰するっていうのは蒸気圧=外圧になるってことですよねぇ。となると、パラ体の溶液のほうが外圧が高くなるってことでしょうか?それとも蒸気圧が低くなるのでしょうか?でも、なんでニトロ基の場所が違うだけで、そんなことが起こるノー--?
 教えてくださいっっ!!寝れません!!

Aベストアンサー

原因は分子間水素結合をするか、分子内水素結合(キレーション)をするかです。
パラの場合はニトロ基と水酸基が分子の間で水素結合しますので。沸点は高くなります。見かけの分子量が上がるわけですね。
しかし、オルト体では分子模型を作って頂くと良く分かるのですが、水酸基とニトロ基はとなりあい、分子内の官能基で水素結合を起こします。この現象をキレーションと呼びます。このためオルト、パラと比べて分子単体でいる確率が高くなります。ゆえに他の二つと比べて沸点が下がります。
この現象で同様に溶解度の説明も出来ます。溶解するためには、水和する必要があるわけですが、先の理由によりオルト体では水酸基が水和できない状態になっています。従って溶解度が下がります。パラとメタの差については電子の吸引で説明できます。パラの方がより酸性に傾くわけです。
なお補足ですが、確かパラ体では沸点がなかったのではないでしょうか?その前に分解してしまうはずです。

Qパラニトロフェノールについて教えてください。

p-ニトロフェノールって炭酸ナトリウムで発色するんですか??
発色するのならなぜ発色するのですか??
詳しい方教えてください。お願いします!!

Aベストアンサー

構造の変化に関しては、No.1のご回答に述べられているとおり、H+がとれてフェノキシドを生じるということです。

こうなることによって、共鳴系に大きな変化が生じます。
すなわち、H+が取れる前には、主としてベンゼン環上に分布していたπ電子が、ニトロ基や新たに生じた-O^-を巻き込んで非局在化することになります。
たとえば、ベンゼン環とOの間やベンゼン環とニトロ基由来のNの間の結合に二重結合性が生じ、下記のような共鳴型が大きく寄与することになるために、可視領域に吸収を生じ、黄色に着色することになります。
Hは省略してあります。少々わかりにくいかもしれませんが、ご容赦ください。
    C=C     O-
   /   \   /
O=C     C=N+
   \   /   \
    C=C     O-

上記のような共鳴型が生じる理由として、フェノール性の-OHからH+が取れたことが重要であるということです。

Qフェノール誘導体の酸性度について

今回質問したいのは酸性が強い(pKa値が低い)化合物順に並べよ という問題です。

A.フェノール B.p-メチルフェノール C.m-メチルフェノール D. o-ヒドロキシフェノール

となっています。
自分で考えたことを記述させていただくと、
共鳴構造式はどれも4種類書くことができ、この段階では電子の非局在化の程度は等しいと思います。しかし、メチル基、ヒドロキシル基の両方とも電子供与基であり、ベンゼン環に電子を流し込むので、酸性度が低くなると思います。
AとBは比較できるのですが、特にDが良く分かりません。
よろしくお願いします。

Aベストアンサー

A,B,Cに関しては、比較的簡単ですね。No.1のご回答にもありますように、メチル基の電子供与性のために、いずれの場合も酸性が弱められることになります。
ご承知かと思いますが、なぜ、電子供与性置換基によって酸性が弱められるかと言えば、フェノールからH+がとれてフェノキシドになった状態が不安定になり、解離平衡が解離していない側に移動するからです。
このフェノキシドの状態の共鳴形を書けば、-O^-のオルト位とパラ位に負電荷がくるような共鳴形が書け、このことは、オルト位とパラ位の置換基の影響を受けやすいと言うことを意味します。
したがって、BとCの比較では、パラ置換体であるBの方が、メチル基の電子供与性の影響を受けやすく、酸性度が弱くなります。

問題となるのは、Dの場合ですが、芳香族求電子置換反応において、-OH置換基は一般に電子供与性置換基とされています。しかし、これの意味するところは、芳香族求電子置換反応において、中間体となるカチオンが-OH基の共鳴効果によって安定化されると言うことを意味しています。
ところが、今回考えなければならないのは、ベンゼン環上に負電荷が存在する場合であり、その場合には、上述のような-OHの共鳴効果を考えることはできません。
すなわち、-OH基の酸素原子の電気陰性度が大きいことによる電子求引性誘起効果が現れてくる可能性もあります。そうなると、フェノールよりも酸性が強くなる可能性があります。また、Dが2価のフェノールであることも重要で、-OH基が多い分だけ酸性が強くなると言うことです。以上のことから、Dはフェノールよりも酸性が強くなっていると考えられます。

ただし、1つ気になることとして、通常はo-ヒドロキシフェノールなどという命名はしませんし、こうした問題で、この化合物が引き合いに出されることも少ないように思います。別の化合物との誤認が心配ですので、確認をお願いします。

A,B,Cに関しては、比較的簡単ですね。No.1のご回答にもありますように、メチル基の電子供与性のために、いずれの場合も酸性が弱められることになります。
ご承知かと思いますが、なぜ、電子供与性置換基によって酸性が弱められるかと言えば、フェノールからH+がとれてフェノキシドになった状態が不安定になり、解離平衡が解離していない側に移動するからです。
このフェノキシドの状態の共鳴形を書けば、-O^-のオルト位とパラ位に負電荷がくるような共鳴形が書け、このことは、オルト位とパラ位の置換基の影響を...続きを読む

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。

Q光学不活性・・・

光学不活性ってなんかイマイチ意味が分からないんですけど・・・

酒石酸に数種類の立体異性体があって、そのうちに光学不活性なのがあるとかないとかで・・・

光学不活性って鏡に映しても一緒って事ですか?

Aベストアンサー

まず、異性体をもつ化合物について一応説明。
これは、わかりやすくいえば鏡に映したときの鏡像と本体が重なり合わない化合物のことです。

(一番簡単な例)
(1)      :(2)
   1    :   1
   │    :   │
 2-C-3  : 3-C-2
   │    :   │
   4    :   4

1~4が全部別の原子だったら(1)と(2)は重なり合いませんよね。
この場合の(1)と(2)を互いに光学異性体といいます。
ここで話は変わりますが、光は波ですよね。
今に上下に振動している光を考えて、この光を(1)、(2)にそれぞれあてます。
すると、例えば(1)では光が右に15度、(2)では左に15度回転してしまいます。
これが光学異性体の性質なんですね。
(1)が右に回転させただけ(2)は左に回転させる、と。

ここで本題。長々すいません(-_-A;)
光学活性っていうのは、光を当てたときに光が回転しちゃう物質のこと、光学不活性はその逆です。
だから、鏡に映しても一緒なものが光学不活性っていうのは正しいんです。
けど、それだけじゃなくて、例えば(1)と(2)が等量含まれてる物質があったとしたら?
(1)で右に15度、(2)で左に15度ですから、結局もとどうりですよね。
だからこれも光学不活性。
酒石酸の光学不活性なもの(ラセミ酸)っていうのはつまり
(1)と(2)がおんなじだけ入ってるものって事です。
えーと、ほんとに長くなっちゃったんですけど少しでも参考になれば。

まず、異性体をもつ化合物について一応説明。
これは、わかりやすくいえば鏡に映したときの鏡像と本体が重なり合わない化合物のことです。

(一番簡単な例)
(1)      :(2)
   1    :   1
   │    :   │
 2-C-3  : 3-C-2
   │    :   │
   4    :   4

1~4が全部別の原子だったら(1)と(2)は重なり合いませんよね。
この場合の(1)と(2)を互いに光学異性体といいます。
ここで話は変わりますが、光は波ですよね。
今に上下...続きを読む

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Q共役or非共役の見分け方

有機化学や高分子化学の勉強をしているのですが、どういうものが共役で、どういうものが非共役のものなのか、いまいち確信をもって見分けることができません。
なんとなく電子がぐるぐる動いていて、二重結合の位置が常に変わっている(共鳴している?)もののことを共役系と言っている気はするのですが、具体的にどんな形をしたものとか、どんな構造が含まれていたら共鳴していると言うのかがよくわからないでいます。
非常に基礎的なところでつまずいてしまい、なかなか先に進めなくて困っていますので、ぜひご回答よろしくお願い致します。

Aベストアンサー

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同士がくっついてしまって、あたかも二重結合を形成しているかのようになってるんです。
このようにして、炭素4つのp軌道が全部くっついているので、電子は自由に行き来できるのです(非局在化と言います)。共役物質が安定なのはこのためです。

少し踏み込んだ説明をしましたが、わかって頂けましたでしょうか…?

参考URL:http://www.ci.noda.sut.ac.jp:1804/classroom/1998_6_18/Q&A6_18_4.html

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同...続きを読む

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む

Qピリジンが弱塩基である理由

講義で
「ピリジンの塩基性が一般のアミンに比べて低いのはなぜか」
と問われました。そこで私は
「アルキル基から窒素へ電子が押し出されカチオンを安定化するためアミンの方が塩基性が高い」
と答えたのですが
「間違いではないがそれではアミンの塩基性が高い理由に過ぎない」
とあっさりつき返されてしまいました。

答えを知りたく、講義が終わってから質問に行ったところ、
“窒素上の孤立電子対”“s性”というヒントだけ頂けました。
が、s性と聞いても“電子がs軌道上にいる割合”というイメージしかなく、
ピリジンの塩基性とのつながりが良く分かりません。

どなたか、ご教授いただけないでしょうか。
よろしくお願いします。

Aベストアンサー

脂肪族アミンがアンモニウムになると、Nの混成はsp3になるのに対して、ピリジンがアンモニウムになったピリジニウムの場合には、Nの混成はsp2になります。

たとえば、sp2混成のエチレンとsp3混成のエタンとを比較した場合に、前者の方が強い酸であることはご存じですよね?
そのことからも類推できますように(というか、それと同様の理由によって)sp2混成であるピリジニウムの方が強い酸であるということになります。
これは、裏を返せばピリジンの方が弱い塩基であるというのと同じ意味になります(ブレンステッド-ローリーの酸塩基の定義を思い出して下さい)。

それでは、なぜ、エチレンの方がエタンよりも強い酸であるかということは、s軌道の方がp軌道よりも小さいために、原子核の近いところで強く引きつけられているからであると説明されます。つまり、s性の大きい軌道(ここではsp2)の方が、電子対が中心原子に強く引きつけられており、結果的にH+を放出しやすくなり強い酸になるということです。

・・・少し難しかったでしょうか?

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング