
No.7
- 回答日時:
lim[x→0]sin(1/x)が存在すると仮定します。
すると、
これはxのゼロの近づき方にかかわらず、この極限値は同じにならないといけない。
ということで、
x_n = 1/(π/2+2nπ)
ここで、n=1,2,3・・・
という点をとりながら、
xがゼロに近づいてゆくと、
sin(1/x_n) = sin(π/2+2nπ) = 1
なので、
lim[x→0]sin(1/x)=0
にならないでしょう。
この近づき方だと、
lim[x→0]sin(1/x)=1
になってしまいます。
さらに、x_n = 1/(-π/2+2nπ)という点をとりながら、xがゼロに近づくと、
sin(x_n) = sin(-π/2+2nπ) = -1
だから、
lim[x→0]sin(1/x) = -1
となってしまいます。
xのゼロに近づき方によって、lim[x→0]sin(1/x)(?)の値が変わってしまいます。
つまり、
lim[x→0]sin(1/x)
は存在しない!!
ということです。
No.5
- 回答日時:
Yahoo! 知恵袋に似た質問がありました
極限値を求める問題ですが、
lim[x→0] sin(1/x) の極限値はどのように式で表して解答すればよいのでしょうか。
http://detail.chiebukuro.yahoo.co.jp/qa/question …
ベストアンサー:
ε-δ論法&背理法にしてみます。
x→0でsin(1/x)→aと収束すると仮定する。あるδ>0に対して、閉区間D=[{(2/δ)+2π}^(-1), δ/2]を考えると、
f(x)=sin(1/x)と書くとf(D)=[-1,+1]⊂Rとなる。よって例えばε=1/2とすると、これはε-δ論法による極限の定義、
任意のε>0に対して「|x|<δ⇒|sin(1/x)-a|<ε」となるδ>0が存在する
の反例となっており、収束するとの仮定が誤りと分かる。
「反例となっている」を補足説明します。
(1) 閉区間Dは{x∈R:|x|<δ}に含まれます。
(2) しかし、f(D)は長さ2の区間であるのに対し、{x∈R:sin(1/x)-a|<ε}(ε=1/2)はaによらず長さ1の区間なので、
決してf(D)⊂{x∈R:sin(1/x)-a|<ε}とはなりません。
以上(1)(2)から、|x|<δ⇒|sin(1/x)-a|<εが成立しないことが分かります。
~~~~~~~~~~~~~~~~~~~~~~
【答え】 |x|<δ⇒|sin(1/x)-a|<ε は成立しません
No.4
- 回答日時:
No.3 さん、訂正どうもありがとう
sin(1/x) って、x が 0 に近づくと、1/x は無限に大きくなって、
sin(1/x) は -1 と 1 の間を限りなく振幅しますよね
x → ∞ だと、lim[x→∞]sin(1/x)=0 になりますけど
それとも、lim[x→0]sin x =0 かなぁ?

No.3
- 回答日時:
命題の式
lim[x→0]sin(1/x)
において,xが限りなく 0 に近づくとき,1/x は限りなく無限大に近づく事になります。
NO.1 さんのご回答の内,『sin (1/2) 』は『sin (1/x→0) 』の書き誤りかと思いますが,『-1 と 1 の間を限りなく振幅し、0 にはなりません』が正解かと思います。
No.2
- 回答日時:
with_nature って自然、天然って意味ですか?
僕も卓球のコーチから天然って言われます
普通にドライブしてても、真ん中に当たらないので
ナックルになったり、エッジに当たって回転
かからなかったり、指に当たって指ナックルになったり
横回転サーブのつもりなのに、何故か上、下回転が
かかります
僕より上手な中学生はいつも同じボールを返してて
コーチに「素直すぎる。クセ球がない。簡単に返せる」
と文句 言われてます
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
【初月無料キャンペーン実施中】オンライン健康相談gooドクター
24時間365日いつでも医師に健康相談できる!詳しくはコチラ>>
-
f(x)=sin(1/x)(xは0以外)を0に限りなく近づけた極限を求めたいのですが、私は∞という答
数学
-
大学の問題です。
数学
-
数IIIの極限
数学
-
4
sin(1/n)
数学
-
5
積分で1/x^2 はどうなるのでしょうか?
数学
-
6
e^(x^2)の積分に関して
数学
-
7
lim[x→∞]log(1+x)/x これってどう解けばいいんでしょうか?
数学
-
8
関数の連続性ε-δ論法
数学
-
9
e^-2xの積分
数学
-
10
∫1/(x^2+1)^2 の不定積分がわかりません
数学
-
11
最大元と極大元の定義の違いが分かりません
数学
-
12
∫1/√x dx 積分せよ 教えて下さい
その他(教育・科学・学問)
-
13
lim[n→∞](1-1/n)^n=1/e について
数学
-
14
log(1+x)の微分
数学
-
15
基底であることを示す問題
数学
-
16
limの問題
数学
-
17
三角関数(たとえばf(x)=sinxとか)の連続性を証明したいんですけ
数学
-
18
大学数学の極限の問題について lim【x→+0】(1/x -1/sinx )の極限はどのように求める
数学
-
19
関数の極限について
数学
-
20
(sinx)^6の積分を教えてください
数学
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
写真の式の1行目から2行目につ...
-
5
写真の式の1行目から2行目につ...
-
6
(sinx)^6の積分を教えてください
-
7
sinx=cosxの解き方。
-
8
eの積分について
-
9
底辺と角度から、高さを求める。
-
10
大学受験時のsin,log,lim,xの表記
-
11
2つの円の一部が重なった図
-
12
sin2tの積分の仕方わかる人いま...
-
13
極限の問題
-
14
sinωTをTで積分。
-
15
4階の微分方程式の解き方を教え...
-
16
周期の最小値?
-
17
sinのマイナス1乗の計算方法を...
-
18
sin2θからsinθを求めるには?
-
19
0°≦θ≦180° sinθ=0° のとき、 θ=...
-
20
数2の問題です θ=7/6π のsinθ...
おすすめ情報
公式facebook
公式twitter