A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
図形を扱うとき、対称性って大切です。
|x|+|y|≦1 を x軸対称に移動すると、|x|+|-y|≦1,
y軸対称に移動すると、|-x|+|y|≦1.
どちらも、|x|+|y|≦1 と同じ式ですね?
と、いうことは、|x|+|y|≦1 が表す領域は
x軸対称, y軸対称だということです。
ならば、|x|+|y|≦1 が表す領域のうち
x≧0, y≧0 の範囲にある部分だけを図示した後、
x軸対称, y軸対称になるように拡張しても
領域全体を得ることができますね?
x≧0, y≧0, |x|+|y|≦1 ⇔ x≧0, y≧0, x+y≦1
ですから、この部分を図示するのは、
絶対値を扱う必要がなく、やや簡単です。
No.1
- 回答日時:
場合分けを
(i) x ≧ 0, y ≧ 0
だけで考えて
(ii) x < 0, y ≧ 0
は |x| = |-x| = -x なので (i) を y 軸に対称にしたもの。
これは (i) の「x」を「-x」にしたものと考える。
(iii) x ≧ 0, y < 0
は |y| = |-y| = -y なので (i) を x 軸に対称にしたもの。
これは (i) の「y」を「-y」にしたものと考える。
(iv) x < 0, y < 0
は |x| = |-x| = -x、|y| = |-y| = -y なので (i) を x 軸、y 軸に対称にしたもの。
これは (i) の「x」を「-x」に、「y」を「-y」にしたものと考える。
ということなのでしょう。
「直感」「言われた通り」ではなくて、ちょっと「想像力」を働かせないいけないかもしれませんね。
なので「別解」にしているのでしょう。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 領域の問題について質問です。 実数s, tは,s^2+t^2≦1, s≧0, t≧0 を同時に満たし 3 2023/05/18 20:59
- 物理学 示すように,真空中の直交座標系を考える。y平面に平行な つ領域Iと領域Iがあり,軸上の領域Iと領域I 1 2023/06/25 14:46
- 数学 写真の問題の(2)の解IIについてですが、 なぜ「x+y≦1(x≧0,y≧0)の部分とそれをx軸,y 2 2023/08/04 17:02
- 数学 数Bの漸化式の問題についての質問です。 平面上にn個の円があって、それらのどの2つも異なる2点で交わ 5 2024/06/16 11:19
- 大学・短大 【線形代数について質問です】 点(4.3)を点(3.4)に写す1次変換のうち、原点を通る直線について 1 2023/06/11 14:29
- 数学 X軸に関して対称といえる理由を教えてください 5 2023/12/16 23:09
- 数学 点P(x,y)が平面上の領域|x|+|y|≦1を動くとする。X=x+y, Y=xyとするとき,点Q( 17 2023/07/23 10:18
- 工学 フィードバック制御の問題です。 1 2022/12/11 20:15
- 数学 数学についての質問です。 次の条件を満たす放物線の方程式を求めよ。ただし、軸はy軸に平行とする。 ( 9 2023/12/29 16:36
- 数学 数学II 次の不等式が表す領域を図示せよ y≦1-x^2 どうなりますか?分かりません。お願いします 6 2024/05/07 16:52
このQ&Aを見た人はこんなQ&Aも見ています
-
つい集めてしまうものはなんですか?
人間誰もは1つ「やたらこればかり集めてしまう」というものがあるもの。 あなたにとって、つい集めてしまうものはなんですか?
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
これ何て呼びますか Part2
あなたのお住いの地域で、これ、何て呼びますか?
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
好きな「お肉」は?
牛肉、豚肉、鶏肉、ラム肉、クマやシカの狩猟肉……。 いろ〜んな肉が食べられるようになりましたよね。 あなたがこれまで食べて「これはうまい!」とか「なんじゃこりゃ!」と好きになったお肉を教えてください。
-
数学の約束記号の問題について教えてください。
数学
-
算数や数学の問題って、問題自体が間違えていることもあるので、出題者の意図を汲み取ってどのような解答を
数学
-
円の方程式について教えてください 青字のところがわからなくて 4 < a < ? まで実数解が4個な
数学
-
-
4
数学I アホらしい質問なのでそんなこと考えることは無駄などの解答は受け付けておりません。 また自分的
数学
-
5
数学の問題に関して質問です。私の解答に問題がないか教えてください。
数学
-
6
簡単なはずですが教えてください。
数学
-
7
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
8
複素数の問題で質問があります
数学
-
9
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
10
数学の問題が解けません
数学
-
11
以下数学の問題があります。解法はではなくどのようにして解法を思いつくに至ったかの経緯を教えて下さい。
数学
-
12
こうなる理由が分かりません
数学
-
13
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
14
この数学の問題解き方あってるか見てほしいです
数学
-
15
なんでですか?
数学
-
16
n^2+n-4032はどうやって解くんですか? n=-64,63になるらしいですがそんなのどうやって
数学
-
17
数学Aについて、4でも6でも割り切れないという日本語を、数式に表すことができませんでした。 200〜
数学
-
18
中二数学について質問です。 整数の性質のところで、nを整数とすると2の倍数は2n、3の倍数は3nなど
数学
-
19
数学 ある自然数a,b,c,dは互いに素とし、 a/b>c/dという不等式が成り立つなら なぜb/a
数学
-
20
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
tの値が変化するとき、放物線y=...
-
日常生活で放物線や双曲線の例...
-
円柱をある角度で切断時の楕円...
-
双曲線の焦点を求める時はなぜ√...
-
二次関数の良さ
-
楕円の焦点,中心を作図で求め...
-
数学を早急に教えて頂きたいで...
-
楕円の一つの焦点から出た光は...
-
始点OX上の点A(3,0)を通り...
-
楕円の書き方
-
添付画像の放物線はどんな式で...
-
極座標 楕円
-
3点を通る放物線が存在する条...
-
放物線の回転図形の式
-
数学 不等式の表す領域
-
(2)が分からないので教えて下さ...
-
2つの楕円の交点の求め方が分...
-
2:1正楕円とは何ですか?
-
放物線y=x^2-3xと y=0,y=4 で囲...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
tの値が変化するとき、放物線y=...
-
二次関数の良さ
-
双曲線の焦点を求める時はなぜ√...
-
【至急】困ってます! 【1】1、...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
パラボラアンテナはなぜ放物線...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
-
数学の問題です。 実数x、yが、...
-
数3 放物線 y^2=4pxという式を...
-
2次関数と似ているグラフについて
おすすめ情報