グッドデザイン賞を受賞したウォーターサーバー >>

教えていただきたいのは以下の問題です。

∫√[x(x+1)] dx を適当な初等関数を用いた変数変換で有理関数の積分に帰着させよ
(積分は実行しなくてもよい)

√(x(x+1)) = √(x^2+x) = (1/2)*√[{2(x+(1/2))}^2-1]

2(x+(1/2)) = 1/Cos[x] とおくと

dx = {(2x+1)^2/2}*Sin[θ] dθ

∴∫√[x(x+1)] dx

= ∫(1/2)√[(1/Cos^2[θ])-1]*{(2x+1)^2/2}*Sin[θ] dθ

= ∫(1/4)*Tan[θ]*Sin[θ]/Cos^2[θ] dθ

=…

でいいのでしょうか?
また、積分を実行するとしたらどうすればいいのか教えてください。

A 回答 (2件)

高校生ですよね。


結局は、
∫√(x^2-1)dx
の積分をどうするかだと思います。
質問者さんは、おそらく、
1/cos^2(t) - 1 = tan^2(t)
という式を思い浮かべて変数変換したんだと思いますが、
その方針だとうまく行かないですね。

実は、大学生であれば、この積分は見た瞬間に、
x = cosh(t) = {exp(t) + exp(-t)}/2
と置き換えようと考え付かないとおかしいんですが、高校生には厳しいですね。(高校では双曲線関数習いませんから)

その代わり、高校生というか大学受験の世界では、
∫√(x^2-1)dx や、∫1/√(x^2-1)dx なんかは、
t = log{x+√(x^2-1)}
という変数変換をするというのが定石ということになっています。
こんな変数変換は覚えていなければ絶対に思いつくわけがないので、覚えるしかないです。

※双曲線関数(cosh, sinh)についても、知っていると出題の背景が分かったりして圧倒的に有利になる問題もあるので、ちょっとだけでも知っているといいかもしれません。
    • good
    • 0
この回答へのお礼

すいません、、、とても言いにくいんですが――  大学生です(笑)
丁寧な解説ありがとうございます。勉強になりました。
きっと高校大学と相当勉強なさった方なんでしょうね、おそれいります。
あと、
>= ∫(1/4)*Tan[θ]*Sin[θ]/Cos^2[θ] dθ
を経由できたとすれば
Tan[θ/2] = t
とおいてやればよかったのですね。

お礼日時:2009/10/11 21:36

有理関数の積分に帰着というなら、


  √(x(x+1)) = (x+1)*√(x/(x+1))
と変形してから、t=√(x/(x+1))と変数変換してみてください。
  t = √(x/(x+1))
  t^2 = x/(x+1)
  x = (t^2)/(1-t^2)
よりdx/dtがtについての有理関数で表されます。
また
  x+1 = (t^2)/(1-t^2) +1 = 1/(1-t^2)
  √[x(x+1)] = t
ですから、被積分関数も全てtについての有理関数で表されます。
これで、変数変換によって有理関数の積分に帰着できるというわけです。
    • good
    • 2
この回答へのお礼

この変形
>√(x(x+1)) = (x+1)*√(x/(x+1))
が一番自然なきがしますね。
三角関数でおくことばかり考えてました。
ありがとうございます。

お礼日時:2009/10/11 21:44

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む

Q∫1/x√(x^2+1) の積分について。

∫1/x√x^2+1を積分しろ
という問題があるのですが、解答をみると
√(x^2+1)=t-x
と、置き換えて積分していくのですが、僕は
√(x^2+1)=t
とおいて積分したのですが、これでは出来ないのでしょうか?
一応これでも計算はできた(つもり?)のですが、解答と答えが違っていたのでどこかで、ミス(思い違い?してはいけないことをした?)があったのかと思うのですが…。

答えは
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|
です。
僕の置換の方法でやると、
1/2log|√(x^2+1)-1/√(x^2+1)+1|
です。

Aベストアンサー

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^2+1))]|
=Log―――――――――――――――――――――――――
              |(x+1)^2-(x^2+1)|


     |x^2-(1-√(x^2+1))^2|
=Log―――――――――――――――
              |2x|


     |x^2-1+2√(x^2+1)-x^2-1|
=Log――――――――――――――――――
              |2x|


     -1+2√(x^2+1)-1
=Log――――――――――――
              |2x|


     √(x^2+1)-1
=Log―――――――――
        |x|


     [√(x^2+1)-1][√(x^2+1)+1]
=Log―――――――――――――――――
        |x[√(x^2+1)+1]|


         |x^2|
=Log――――――――――――
     |x[√(x^2+1)+1]|


           |x|
=Log――――――――――――
      √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
------------------------------------------------------------

1/2log|√(x^2+1)-1/√(x^2+1)+1|

   1        √(x^2+1)-1
 ――― ・ Log――――――――――――
   2        √(x^2+1)+1


   1        [√(x^2+1)-1][√(x^2+1)+1]
=――― ・ Log―――――――――――――――――
   2        [√(x^2+1)+1][√(x^2+1)+1]


   1            |x^2|
=――― ・ Log――――――――――――
   2        [√(x^2+1)+1]^2


            |x|
= Log――――――――――――
       √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
-----------------------------------------------------------

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^...続きを読む

Q∫{x/(x+1)}dxの解き方

とても初歩的なのですが、積分についての質問です。
∫{x/(x+1)}dxの解き方が分かりません。

以下のように解きました。

∫{x/(x+1)}dx
x+1=tとする
x=t-1よりdx=dt
よって
∫{x/(x+1)}dx=∫{(t-1)/t}dt
=∫(1-1/t)dt
=t-log(t)+C (C:積分定数)
=(x+1)-log(x+1)+C

こうなったのですが、どうやら計算違いのようで、解は「x-log(x+1)+C」となっていました。
解が出なかったわけではなく、最初の時点で「x/(x+1)」を「1-1/(x+1)」と変形したらちゃんと解は出たのですが、上記の解法の間違いが分からず、もやもやしています。
どこが間違っているのでしょうか。
置換積分が使えるのは特定の数式の場合のみなのでしょうか。
積分は不得意なので、見苦しい点あるかと思いますが、ご指摘お願いします。

Aベストアンサー

見たかんじ合っていそうです。

=(x+1)-log(x+1)+C

=x-log(x+1)+(C+1)

C+1を積分定数と考えればいいでしょう。

Q2階微分d^2y/dx^2を詳しく教えてください

微分=傾き=tanθ=dy/dxと言うのは入門書でなんとかわかったのですが
2階微分=傾きの変化率(傾きの傾き)=d^2y/dx^2
のこのd^2y/dx^2がなぜこうなるのかぜんぜんわかりません。
dy/dxがどう変化してd^2y/dx^2となるのか教えてください。
いろいろ本やネットで調べましたが傾き=tanθ=dy/dxまでは入門書でも
詳しく書かれているのですがd^2y/dx^2へはどの解説でもいきなり飛んでいってしまいます。

Aベストアンサー

表記の仕方ですか?
dy/dxは 
yをxで微分するということです
2階微分はdy/dxをさらにxで微分するということです
dy/dxのyのところをdy/dxにおきかえれば
d(dy/dx)/dx=d^2y/dx^2
見た目ではdが2回掛かっているからd^2
dxの部分も2回掛かっているのでdx^2なんですが
dを1つの変数とみたり、dxを1つの変数と見てたりして分かりにくいかもしれません
これはそう決めたからなんです
ある程度覚えるしかないです

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q積分 ∫√(4-x^2)dxについて

不定積分の問題なのですが、
∫√(4-x^2)dxの答えがどうしても導けません。
助言をお願いします。

Aベストアンサー

∫√(4-x^2)dx
=4∫(cos(t))^2dt←x=2sin(t),|t|≦π/2とおく。
=2∫(1+cos(2t))dt
=2t+sin(2t)+C
=2 arcsin(x/2)+(x/2)√(4-x^2)+C

ここで、
sin(2t)=2sin(t)cos(t)=2 sin(t)√(1-(sin(t))^2)=
=x√(1-(x/2)^2)=(x/2)√(4-x^2)