人に聞けない痔の悩み、これでスッキリ >>

この積分の方法が分かりません。
どうしたら良いでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

多分、初等関数で表すことはできないと思います。


部分積分で次数を減らしてみましょう。

∫x^2*exp(x^2)dx=∫(x/2)*(2x*exp(x^2))dx
=(x/2)*exp(x^2)-∫(1/2)exp(x^2)dx (2x*exp(x^2)=(exp(x^2))')

となりますが、∫exp(x^2)dxは初等関数で表すことができないと記憶しています。
    • good
    • 3

この不定積分は初等関数の範囲では積分できません。


高校までの数学では積分不可能(積分できない)の扱いです。

大学の数学レベルになりますが、
特殊関数の複素領域に拡張された誤差関数erf(z)を使えば
不定積分Iは
I=(x/2)e^(x^2)+i*(√π)erf(xi)/4
となります。ここで、iは虚数単位です。
    • good
    • 6

部分積分で解けます。

    • good
    • 2

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q教えてください。不定積分 ∫(e^x /x^3)dx

教科書で問題を解いてるときに 
∫(e^x /x^5)dx
という積分が出てきました。1日考えてみて置換積分を試したりしてもも糸口すら見つかりません。
出来るなら解答までの計算式も含めて、どうかよろしくお願いします。

一応ですが、元の問題は (x^2)y''-5xy'+8y=e^x  です。
もしこの積分が必要ない時には問題の1歩目から間違ってる事になるのでご指摘お願いします。

Aベストアンサー

ANo.2さんの回答が「内容確認中」なので重複しているかもしれません。

途中で∫(e^x /x^5) dx は出てきます。∫(e^x /x^5) dx は部分積分法を使って、∫(e^x /x) dx を含む形に変形できますが、∫(e^x /x) dx は初等関数で表わすことはできません。

問題の解は、指数積分関数 Ei(n,x) を使うと
   y = -(1/48)*( x - 3 )* ( x^2 + 4*x + 2 )*exp(x) - (1/48)*x^2*[ { Ei(1,-x) - 48*C1 }*x^2 - 12*Ei(1,-x) - 48*C2 ] ]
となります。指数積分関数は
   Ei(n,x) = ∫[t = 1~∞] exp(-x*t)/t^n dt
で定義されますが、解の中に含まれるのは n = 1 場合の関数
   Ei(1,-x) = ∫[t = 1~∞] exp(x*t)/t dt
です。

(解法)
元の微分方程式の両辺を x^2 で割ると
  y'' - 5*y'/x + 8*y/x^2 = exp(x)/x^2
となるので、z = y/x^2 おくと z(x) に関する微分方程式
   z'' - z'/x = exp(x)/x^4
となります。さらに p = z' とおけば、p(x) に関する1階の微分方程式
   p' - p/x = exp(x)/x^4
になります。この解は
   p = x*∫exp(x)/x^5 dx + C1*x
問題の積分 ∫exp(x)/x^5 dx は部分積分を繰り返せば
   ∫exp(x)/x^5 dx = -(1/24)*exp(x)*( 1/x + 1/x^2 + 2/x^3 + 6/x^4 ) + (1/24)*∫exp(x)/x dx
なので
    p = -(1/24)*exp(x)*( 1/x + 1/x^2 + 2/x^3 + 6/x^4 ) + (1/24)*∫exp(x)/x dx + C1*x
したがって
   z = ∫p dx = -(1/24)*∫exp(x)*( 1/x + 1/x^2 + 2/x^3 + 6/x^4 ) dx + (1/24)*∬exp(x)/x dx + C1*(x^2/2) + C2
最終的には
   y = x^2*z
から y を計算しますが、以下の性質を使えば Ei(1,-x) で表わすことができます。
   ∫exp(x)/x dx = -Ei(1,-x)
   ∫exp(x)/x^2 dx = -exp(x)/x - Ei(1,-x)
   ∫exp(x)/x^3 dx = -(1/2)*exp(x)/x^2 - (1/2)*exp(x)/x - (1/2)*Ei(1,-x)
   ∫exp(x)/x^4 dx = -(1/3)*exp(x)/x^3 -(1/6)*exp(x)/x^2 -(1/6)*exp(x)/x - (1/6)*Ei(1,-x)
   ∬exp(x)/x dx = - exp(x) - x*Ei(1,-x)

ANo.2さんの回答が「内容確認中」なので重複しているかもしれません。

途中で∫(e^x /x^5) dx は出てきます。∫(e^x /x^5) dx は部分積分法を使って、∫(e^x /x) dx を含む形に変形できますが、∫(e^x /x) dx は初等関数で表わすことはできません。

問題の解は、指数積分関数 Ei(n,x) を使うと
   y = -(1/48)*( x - 3 )* ( x^2 + 4*x + 2 )*exp(x) - (1/48)*x^2*[ { Ei(1,-x) - 48*C1 }*x^2 - 12*Ei(1,-x) - 48*C2 ] ]
となります。指数積分関数は
   Ei(n,x) = ∫[t = 1~∞] exp(-x*t)/t^n dt
で定...続きを読む

Qexp(f(x))の積分方法

もう一つ教えてください。
exp(f(x))の積分方法はどうやって計算するのでしょうか。
先ほど教えていただいた
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html
にも載っていませんでした。

私が持っている微分積分の公式集ではexp(ax)=(1/a)e^axということしか載っていませんでした。
解る方お願いします。

Aベストアンサー

微分ができるのは、微分の結果を表す関数が定義された関数(初等関数と呼ばれている)だけで表現できるからです。
所が積分結果を表す関数が初等関数の中になければ積分結果を関数で表すことができません。つまり公式集に全ての初等関数の組み合わせで作られた関数の積分結果を表す関数が初等関数の組み合わせで書き表せないケースが多く存在します。つまり積分公式集に書けない関数が存在します。
e^(x^2), sin(k*cos(2x))などは積分結果を式で表現できません。
しかし関数が存在するわけですから数値積分や積分範囲が決められた定積分などは可能です。積分結果は数値として出てきます。
積分結果が初等関数で表せない場合の積分は、数値積分の他に、特殊関数(多くは積分形式で定義されていることが多い)で表す場合があります。

微分公式集は左の列に「微分される関数」、右の列に「微分結果」を書いてあります。
(不定)積分は微分の逆ですから、微分公式集の左の列と右の列を入れ替えて、左の列に「被積分関数」、右の列に「積分結果」と書けば済みます。
そうは言っても、使い安い微分公式集や積分公式集になるわけではありません。
左側の列には通常積分または微分したい関数の形で並べてないと使いやすい公式集といえません。
微分公式集の場合
e^f(x)→f'(x)e^f(x)
積分公式集の場合
f'(x)e^f(x)→e^f(x)
と形式上はなりますが
積分公式集の場合
xe^{(x^2)/2}→e^{(x^2)/2}
e^{(x^2)/2}→ nan
cos(x)e^sin(x)→e^sin(x)
(1/x)e^log(x)→e^log(x)
などを一覧に書き出しておけば使い物になります。

使いやすい積分公式集を作ってください。

微分ができるのは、微分の結果を表す関数が定義された関数(初等関数と呼ばれている)だけで表現できるからです。
所が積分結果を表す関数が初等関数の中になければ積分結果を関数で表すことができません。つまり公式集に全ての初等関数の組み合わせで作られた関数の積分結果を表す関数が初等関数の組み合わせで書き表せないケースが多く存在します。つまり積分公式集に書けない関数が存在します。
e^(x^2), sin(k*cos(2x))などは積分結果を式で表現できません。
しかし関数が存在するわけですから数値積分や積...続きを読む

Qe^(ax)の微分と積分

e^(ax)の微分と積分

e^x'=e^x
∫e^x dx=e^x
ですが、
e^(ax)'=a*e^(ax)
∫e^(ax)dx=(1/a)*e^(ax)
で合ってますか?

Aベストアンサー

aが定数なら合っています。

細かい事を言うなら、積分の方は積分定数が必要です。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q指数関数の積分について

e^x^2 を不定積分した場合の解を教えて下さい。

e^x は微分すると不変で e^x 、
e^ax は微分すると a*e^ax になるんですよね。
参考書を見ると、e^x^2 を微分すると 2x * e^x^2 になっているようです。
すると、e^x^2 を不定積分したら 1/2x * e^x^2 になるのでしょうか?
ただ、1/2x * e^x^2 を微分しても e^x^2 にはならず、(-1/x^2 + 1)e^x^2 になるように思います。

ご回答お願い致します。

Aベストアンサー

#2です。
補足です。
>大学レベルの数学では、不定積分は
>∫e^(x^2)dx=-i(√π)erf(ix))/2 +C (iは虚数単位,elf(・)は誤差関数)
この積分の「-i(√π)erf(ix))/2」は虚数単位が含まれていますが、実数
になります。
この誤差関数erf(x)を使わないで、参考URLの
特殊関数である虚部誤差関数erfi(x)を使って表せば、
∫e^(x^2)dx=(√π)erfi(x))/2 +C

なお、
erfi(x)=erf(ix)/i
の関係にあります。

参考URL:http://integrals.wolfram.com/index.jsp?expr=Exp%5Bx%5E2%5D&random=false


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング